期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exploring the Unknown: The Application and Prospects of Artificial Intelligence in Genomics and Bioinformatics
1
作者 Qigang Feng Jie Li Qing Zhang 《Health》 2024年第9期837-848,共12页
This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutti... This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutting-edge fields of genomics and bioinformatics, the application of AI is propelling a deeper understanding of complex genetic mechanisms and the development of innovative therapeutic approaches. The precision of AI in genomic sequence analysis, coupled with breakthroughs in precise gene editing, such as AI-designed gene editors, significantly enhances our comprehension of gene functions and disease associations . Moreover, AI’s capabilities in disease prediction, assessing individual disease risks through genomic data analysis, provide robust support for personalized medicine. AI applications extend beyond gene identification, gene expression pattern prediction, and genomic structural variant analysis, encompassing key areas such as epigenetics, multi-omics data integration, genetic disease diagnosis, evolutionary genomics, and non-coding RNA function prediction. Despite challenges including data privacy, algorithm transparency, and bioethical issues, the future of AI is expected to continue revolutionizing genomics and bioinformatics, ushering in a new era of personalized medicine and precision treatments. 展开更多
关键词 AI GENomics Disease Prediction Gene Editing multi-omics data fusion
下载PDF
基于个性化随机游走的基因-表型关联分析
2
作者 谭好江 王峻 +2 位作者 余国先 陈建 郭茂祖 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1619-1632,共14页
基因与表型间的关联分析对揭示生物的内在遗传关联具有重要意义.随机游走算法可以融合多组学数据,聚合一阶或高阶邻居的标签信息,对网络中不同节点间关联信息进行补全,提高关联预测的准确度,进而发现基因和表型间潜在的遗传关联.但现有... 基因与表型间的关联分析对揭示生物的内在遗传关联具有重要意义.随机游走算法可以融合多组学数据,聚合一阶或高阶邻居的标签信息,对网络中不同节点间关联信息进行补全,提高关联预测的准确度,进而发现基因和表型间潜在的遗传关联.但现有随机游走算法通常平等地对待每个节点,忽略了不同节点的重要性,使非重要节点过度传播,降低了模型性能.为此,本文提出了一种基于多组学数据融合的个性化随机游走算法(individual Multiple Random Walks,iMRW),在由基因、miRNA及表型节点构建的多组学异质网络上,基于网络拓扑结构,设计个性化多元随机游走策略,为不同重要程度的节点分配不同的游走步长,并结合高斯相互作用属性核相似性与随机游走,对网络不同节点及节点间关联信息进行补全,最终实现多源基因-表型关联矩阵的融合,准确获取基因-表型关联预测矩阵.在不同实验设置下,与主流算法的对比实验结果均显示iMRW能够取得更优的预测性能.在玉米光合作用能力和淀粉含量表型的实验分析结果也进一步证实了iMRW在识别潜在的基因-表型关联的实用性与有效性. 展开更多
关键词 基因-表型关联 随机游走 异质网络 多组学数据融合 网络拓扑结构
下载PDF
基于单细胞数据的癌症协同驱动模块识别方法
3
作者 陈希 王峻 +2 位作者 余国先 崔立真 郭茂祖 《中国科学:信息科学》 CSCD 北大核心 2023年第2期250-265,共16页
从大规模生物组学数据中准确识别导致癌症发生的协同驱动模块是生物信息学研究领域重大课题之一.现有研究方法通常只基于批量组学数据进行识别,忽视了细胞水平上的癌症异质性,易受噪声影响.针对上述问题,本文提出了一种基于单细胞数据... 从大规模生物组学数据中准确识别导致癌症发生的协同驱动模块是生物信息学研究领域重大课题之一.现有研究方法通常只基于批量组学数据进行识别,忽视了细胞水平上的癌症异质性,易受噪声影响.针对上述问题,本文提出了一种基于单细胞数据和先验知识指导的协同驱动模块识别方法CDMFinder.该方法首先利用基因在不同亚型及正常细胞表达数据间存在的特异性共表达信息,融合基因交互网络,优化形成分子功能关联网络,在深入挖掘基因间功能关联的同时有效降低网络复杂度;再基于重叠马尔可夫(Markov)聚类从该网络中挖掘功能簇,并提出基于融合权重和贪心策略的驱动模块识别方法,从功能簇中获得驱动模块集合;最后,融合功能交互网络与突变共现定义模块距离函数,识别获取协同驱动模块. CDMFinder充分融合评估了表达、突变、差异分析等多种因素,展现了优良的识别性能.在乳腺癌和胶质母细胞瘤多组学数据上的实验结果表明,本文方法能够识别出超过对比方法 1.35倍的驱动基因,识别到的协同驱动模块在功能/通路水平富集度上超过现有算法1.5倍. 展开更多
关键词 单细胞数据 协同驱动模块 分子功能关联网络 马尔可夫聚类 多组学数据融合
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部