期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种LSTM-BP多模型组合水文预报方法
被引量:
32
1
作者
冯钧
潘飞
《计算机与现代化》
2018年第7期82-85,92,共5页
水文数据是具有时序性的非线性数据,具有高度的不确定性和复杂性。使用单一模型进行预报的结果常常不尽人意,因此本文基于LSTM和BP神经网络建立LSTM-BP多模型组合预报模型进行水文预报。以子午河流域洪水数据为例进行预报,实验结果表明...
水文数据是具有时序性的非线性数据,具有高度的不确定性和复杂性。使用单一模型进行预报的结果常常不尽人意,因此本文基于LSTM和BP神经网络建立LSTM-BP多模型组合预报模型进行水文预报。以子午河流域洪水数据为例进行预报,实验结果表明,多模型组合预报模型的预报结果要优于单一模型,同时预报的稳定性和精确度也得到了提高,从而为水文预报提供了新的思路。
展开更多
关键词
长短期记忆
多模型组合预报模型
水文预报
下载PDF
职称材料
题名
一种LSTM-BP多模型组合水文预报方法
被引量:
32
1
作者
冯钧
潘飞
机构
河海大学计算机与信息学院
出处
《计算机与现代化》
2018年第7期82-85,92,共5页
文摘
水文数据是具有时序性的非线性数据,具有高度的不确定性和复杂性。使用单一模型进行预报的结果常常不尽人意,因此本文基于LSTM和BP神经网络建立LSTM-BP多模型组合预报模型进行水文预报。以子午河流域洪水数据为例进行预报,实验结果表明,多模型组合预报模型的预报结果要优于单一模型,同时预报的稳定性和精确度也得到了提高,从而为水文预报提供了新的思路。
关键词
长短期记忆
多模型组合预报模型
水文预报
Keywords
long
short-term
memory(LSTM)
multi
-
model
combination
forecast
model
hydrologic
forecast
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种LSTM-BP多模型组合水文预报方法
冯钧
潘飞
《计算机与现代化》
2018
32
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部