Morphology of zinc alloy layer,from zincate solution with zinc sulfate and zinc oxide respectively,together with the consequent deposit was observed with SEM and back scattering electron image.EDS was applied to analy...Morphology of zinc alloy layer,from zincate solution with zinc sulfate and zinc oxide respectively,together with the consequent deposit was observed with SEM and back scattering electron image.EDS was applied to analyze the components of zinc alloy layer and the interface of high-Si aluminum alloy substrate-zinc alloy-deposit.Besides,the surface morphology of the zincated aluminum alloy after immersing in 3.5% NaCl solution for 7 d,is observed and the corrosion rate was calculate.Finally,tension test is conducted to quantify the adhesion between high-Si aluminum cast substrate and the deposit.The results show that,the zinc oxide contained zincating solution with sodium potassium tartrate and sodium citrate is a better one in multi-metal zincating solutions.The zinc alloy layer from this one gets stable performance,perfect adhesion with deposit,and good corrosion resistance.展开更多
In order to find out a multi-metal zincate solution to get good micromorphology and fine adhesion of coatings, sulfate zincate and zinc oxide zincate with different chelating agents combinations, of which there are 8 ...In order to find out a multi-metal zincate solution to get good micromorphology and fine adhesion of coatings, sulfate zincate and zinc oxide zincate with different chelating agents combinations, of which there are 8 solutions are designed. CHI630 electrochemical test system is applied to measure the φ—t curves of zincate process and Tafle curves of zincated plates in 3.5% NaCl medium. The analyzed results show that when molar ratio of sodium hydroxide to zinc ions is constant, the better chelating agents combination for multi-metal zincation solution is the combination of sodium potassium tartrate and sodium citrate in zinc oxide solution, from which zinc alloy is high in potential and perfect in corrosion resistance. After the second zincate immersion for 60s, the immersion potential is -1.606V(vs SCE). The corrosion current density is 6.612, J_ corr/(A·cm -2); and the corrosion potential is -1.381, φ_ corr(I=0)/V.展开更多
基金This work is financially supported by the Foundation of Basic Research of Harbin Engineering Universi-ty( HEUFT06030)
文摘Morphology of zinc alloy layer,from zincate solution with zinc sulfate and zinc oxide respectively,together with the consequent deposit was observed with SEM and back scattering electron image.EDS was applied to analyze the components of zinc alloy layer and the interface of high-Si aluminum alloy substrate-zinc alloy-deposit.Besides,the surface morphology of the zincated aluminum alloy after immersing in 3.5% NaCl solution for 7 d,is observed and the corrosion rate was calculate.Finally,tension test is conducted to quantify the adhesion between high-Si aluminum cast substrate and the deposit.The results show that,the zinc oxide contained zincating solution with sodium potassium tartrate and sodium citrate is a better one in multi-metal zincating solutions.The zinc alloy layer from this one gets stable performance,perfect adhesion with deposit,and good corrosion resistance.
文摘In order to find out a multi-metal zincate solution to get good micromorphology and fine adhesion of coatings, sulfate zincate and zinc oxide zincate with different chelating agents combinations, of which there are 8 solutions are designed. CHI630 electrochemical test system is applied to measure the φ—t curves of zincate process and Tafle curves of zincated plates in 3.5% NaCl medium. The analyzed results show that when molar ratio of sodium hydroxide to zinc ions is constant, the better chelating agents combination for multi-metal zincation solution is the combination of sodium potassium tartrate and sodium citrate in zinc oxide solution, from which zinc alloy is high in potential and perfect in corrosion resistance. After the second zincate immersion for 60s, the immersion potential is -1.606V(vs SCE). The corrosion current density is 6.612, J_ corr/(A·cm -2); and the corrosion potential is -1.381, φ_ corr(I=0)/V.