期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于邻域多核学习的后融合多视图聚类算法 被引量:11
1
作者 夏冬雪 杨燕 +1 位作者 王浩 阳树洪 《计算机研究与发展》 EI CSCD 北大核心 2020年第8期1627-1638,共12页
基于图谱理论的多视图聚类是该领域的代表性方法之一.然而,现有模型尚存在3个问题.1)这类方法大多没有考虑不同视图之间的聚类性能差异,强制要求所有视图共享一个公共相似图;2)部分模型将相似图构建和聚类分步进行,导致所构建的相似图... 基于图谱理论的多视图聚类是该领域的代表性方法之一.然而,现有模型尚存在3个问题.1)这类方法大多没有考虑不同视图之间的聚类性能差异,强制要求所有视图共享一个公共相似图;2)部分模型将相似图构建和聚类分步进行,导致所构建的相似图对于聚类任务并非最优;3)虽已有若干模型采用核学习处理数据间的非线性关系,但大多基于全局模型计算数据在核空间中的自表达关系,不利于充分挖掘局部非线性信息,且易带来沉重的计算负荷.为了应对以上问题,提出一种基于邻域多核学习的后融合多视图聚类算法,在类划分空间而不是数据相似图的层次进行信息融合,采用邻域多核学习方案在充分保留局部非线性关系的同时减轻计算负荷,并提出一种交替优化方案将相似图构建、多核组合、类指示矩阵生成等子任务在统一的框架下进行协同优化.多个数据集上的实验表明:该算法具有良好的多视图聚类效果. 展开更多
关键词 邻域结构 多核学习 谱旋转 后融合 多视图聚类
下载PDF
多模糊核融合的单目标跟踪算法 被引量:9
2
作者 陈晨 邓赵红 +1 位作者 高艳丽 王士同 《计算机科学与探索》 CSCD 北大核心 2020年第5期848-860,共13页
针对当前目标跟踪领域中如何准确迅速地对目标进行定位的问题,大部分流行跟踪器的核心内容是结合核方法去训练一个判别分类器来区分目标和周围环境。例如核相关滤波器算法(KCF)将傅里叶变换与核化判别分类器相结合来提升跟踪速度,以及引... 针对当前目标跟踪领域中如何准确迅速地对目标进行定位的问题,大部分流行跟踪器的核心内容是结合核方法去训练一个判别分类器来区分目标和周围环境。例如核相关滤波器算法(KCF)将傅里叶变换与核化判别分类器相结合来提升跟踪速度,以及引入TSK模糊逻辑系统(TSK-FLS)的模糊核相关滤波器(FKCF)算法来提高跟踪精度。一些基于KCF的改进算法对部分跟踪难题提出了解决方案,但这些算法在精度方面仍有一定的提升空间。针对此,在FKCF的基础上,从多核融合的角度推导出了一种新的多模糊核相关滤波器(MFKCF)。MFKCF继承了KCF高速的以及FKCF高精度的特性,将多项式核与高斯核进行模糊化,并且融合模糊化后的核函数作为新的目标核函数。由于上述两项改进,使所提算法在跟踪精度方面比KCF与FKCF更好。将KCF算法、FKCF算法与MFKCF算法在OTB50等4个数据集上的30个随机选取的视频进行了实验,实验结果表明MFKCF算法总体表现良好,10项常见属性上的精度均有提升。 展开更多
关键词 核方法 判别分类器 傅里叶变换 TSK模糊逻辑系统 多核融合
下载PDF
基于三支特征表示的抽象画情感聚类分析
3
作者 赵婧琦 李宇蕊 +1 位作者 杜明晶 刘静玮 《计算机工程与设计》 北大核心 2024年第3期882-888,共7页
针对绘画图像情感标注所需资源巨大的问题,设计一种针对抽象画图像的情感聚类方法。提出一种基于三支决策的颜色特征表示方法和纹理特征表示方法,结合改进的深度学习模型,从抽象画图像中提取颜色特征、纹理特征和高层语义特征;使用多核... 针对绘画图像情感标注所需资源巨大的问题,设计一种针对抽象画图像的情感聚类方法。提出一种基于三支决策的颜色特征表示方法和纹理特征表示方法,结合改进的深度学习模型,从抽象画图像中提取颜色特征、纹理特征和高层语义特征;使用多核k均值算法,自适应地融合3种特征,实现图像的情感聚类分析。实验结果表明,在MART和Deviant-Art数据集上,与4种基准方法相比,提出方法在准确度、Fowlkes-Mallows指数和标准化互信息上分别平均提高了30、23和49个百分点。提出方法在抽象画图像的情感聚类分析应用中表现出色,这也为其它绘画作品的无监督情感分析研究提供了参考。 展开更多
关键词 三支决策 抽象画 多核聚类 情感分析 特征融合 多视图聚类 卷积神经网络
下载PDF
基于CSO-RVM的瓦斯涌出量预测模型研究 被引量:4
4
作者 付华 任仁 +2 位作者 王雨虹 王馨蕊 单敏柱 《传感技术学报》 CAS CSCD 北大核心 2015年第10期1508-1512,共5页
为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法。相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行... 为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法。相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行之有效的方法。并用CSO算法对RVM瓦斯涌出量预测模型的核函数权重p和高斯核参数σ快速寻优。利用矿井无线传感器网络检测到的各项历史数据试验。结果表明,相比BP、SVM算法,该耦合模型有效提高了预测精度,具有更好的泛化能力,为矿井瓦斯预测提供理论支持。 展开更多
关键词 瓦斯涌出量预测 猫群算法(CSO) 相关支持向量机(RVM) 组合核函数 信息融合
下载PDF
Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine 被引量:2
5
作者 Lele CAO Fuchun SUN +1 位作者 Hongbo LI Wenbing HUANG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期276-289,共14页
Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine l... Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features. 展开更多
关键词 multi-kernel learning online learning extreme learning machine feature fusion robot recognition
原文传递
几何显著变化的表情识别特征构造 被引量:1
6
作者 王田辰 吴秦 宗海燕 《计算机科学与探索》 CSCD 北大核心 2019年第7期1227-1238,共12页
人脸表情作为人类情感的重要传达方式,近年来作为情感计算的重要组成部分,人脸表情识别吸引了很多学者的关注。与其他模式识别的问题类似,构造更为有效的统计特征是解决人脸表情识别的关键所在。同时,由于不同种类的特征对于模型性能的... 人脸表情作为人类情感的重要传达方式,近年来作为情感计算的重要组成部分,人脸表情识别吸引了很多学者的关注。与其他模式识别的问题类似,构造更为有效的统计特征是解决人脸表情识别的关键所在。同时,由于不同种类的特征对于模型性能的贡献不同,有效地利用不同特征对于性能的提升也至关重要。根据几何显著变化筛选标注点以形成几何特征,并根据几何特征构造特定的块形成形态特征;后采用多核多特征融合方法进行表情识别。通过在公开数据集(CK+)和自建数据集(JNFE)上的实验,和一些视频序列表情识别方法对比,分别获得了96.90%和92.85%的准确率,证明了所提方法的有效性。 展开更多
关键词 面部表情识别 纹理特征 几何特征 多核融合
下载PDF
基于有向双关系图和多核融合的蛋白质功能预测
7
作者 孟军 刁印 《计算机应用》 CSCD 北大核心 2014年第12期3433-3437,3474,共6页
针对多源异构蛋白质相互作用网络信息量大、数据冗余导致预测结果不能充分反映数据分布信息的问题,将功能类别网络和蛋白质相互作用网络相结合,提出基于有向双关系图和多核融合的多标记学习算法。首先,构建基于含有损失函数的目标方程... 针对多源异构蛋白质相互作用网络信息量大、数据冗余导致预测结果不能充分反映数据分布信息的问题,将功能类别网络和蛋白质相互作用网络相结合,提出基于有向双关系图和多核融合的多标记学习算法。首先,构建基于含有损失函数的目标方程和最大期望算法的自适应模型;然后,利用图优化策略融合功能类别和蛋白质相互作用网络构成的多个关联矩阵;最后,将融合后的关联矩阵代入模型中预测蛋白质功能。在Yeast和Mouse的蛋白质多源异构数据上的实验结果表明,提出的方法具有预测准确率高、标签损失率低等优势。 展开更多
关键词 有向双关系图 多核融合 半监督学习 多标记 蛋白质功能预测
下载PDF
基于多核融合与局部约束的协同表示目标跟踪
8
作者 王仁芳 刘云鹏 +1 位作者 孙德超 张亮 《光电子.激光》 EI CAS CSCD 北大核心 2019年第1期70-78,共9页
针对局部约束线性编码和协同表示编码的判别信息不足问题,本文提出一种基于多核融合与局部约束的协同表示目标跟踪算法。首先为了获得更好的分类性能,采用局部约束线性编码方法,将样本数据的局部结构引入到协同表示方法中;然后利用核函... 针对局部约束线性编码和协同表示编码的判别信息不足问题,本文提出一种基于多核融合与局部约束的协同表示目标跟踪算法。首先为了获得更好的分类性能,采用局部约束线性编码方法,将样本数据的局部结构引入到协同表示方法中;然后利用核函数将该协同表示扩展到多特征融合的核空间,使得字典和稀疏表示系数对目标特征的类判别能力得到增强;最后视目标跟踪为二分类问题,在粒子滤波框架下将分类器得分最高的候选目标作为跟踪目标。实验结果表明,本文算法在发生目标运动模糊、尺度变化与快速运动以及遮挡、光照变化时具有准确且鲁棒的目标跟踪效果。 展开更多
关键词 目标跟踪 协同表示 局部约束 多核融合 粒子滤波
原文传递
优化多核SVM的蛋白质二级结构预测 被引量:2
9
作者 刘斌 温雪岩 《现代电子技术》 北大核心 2020年第8期139-142,共4页
蛋白质序列的不同特征提取方式对蛋白质结构分类有很大的影响。为更好地表达蛋白质结构信息,基于特征融合思想构建特征向量,并使用一种基于多核支持向量机的方法,以多个核函数的线性加权代替传统的单一核函数,在对多类特征进行整合后构... 蛋白质序列的不同特征提取方式对蛋白质结构分类有很大的影响。为更好地表达蛋白质结构信息,基于特征融合思想构建特征向量,并使用一种基于多核支持向量机的方法,以多个核函数的线性加权代替传统的单一核函数,在对多类特征进行整合后构造SimpleMKL分类模型;利用梯度下降法迭代求解核函数的权值系数,并校准核函数参数和不同特征表达的融合效果。实验结果表明,该方法提高了蛋白质二级结构分类精度,在分类精度方面有明显优势,有助于准确预测蛋白质的二级结构。 展开更多
关键词 蛋白质 二级结构预测 多核支持向量机 特征提取 特征融合 线性加权
下载PDF
FCM-ABC-MKRVM多模型融合软测量建模 被引量:1
10
作者 张洪德 夏陆岳 +1 位作者 刘勇 潘海天 《控制工程》 CSCD 北大核心 2019年第10期1925-1931,共7页
许多化工过程具有强非线性、机理复杂和多工况等特点,针对传统软测量模型无法全面描述过程特性而导致模型预测精度较低的问题,提出一种FCM-ABC-MKRVM多模型融合软测量建模方法。首先采用模糊C均值聚类算法(FCM)将训练样本划分为多个子类... 许多化工过程具有强非线性、机理复杂和多工况等特点,针对传统软测量模型无法全面描述过程特性而导致模型预测精度较低的问题,提出一种FCM-ABC-MKRVM多模型融合软测量建模方法。首先采用模糊C均值聚类算法(FCM)将训练样本划分为多个子类,并确定各子类的聚类中心;然后通过训练各子类样本建立多核相关向量机(MKRVM)子模型,其中采用人工蜂群算法(ABC)优化核函数参数和组合权重因子;在模型预测阶段,计算测试样本与各聚类中心的隶属度值,并作为各子模型输出值的加权系数,通过多模型融合得到最终的模型预测输出。将该建模方法应用于聚丙烯熔融指数软测量研究中,仿真结果表明:与MKRVM模型和ABC-MKRVM模型相比,基于FCM-ABC-MKRVM多模型融合的熔融指数软测量模型具有更佳的预测精度,可以为复杂多工况化工过程的产品质量指标在线预测提供指导作用。 展开更多
关键词 模糊C均值聚类 人工蜂群算法 多核相关向量机 多模型融合 软测量 熔融指数
下载PDF
基于MSK-CNN和多源机电信息融合的同步发电机故障诊断方法 被引量:9
11
作者 马明晗 侯岳佳 +3 位作者 李永刚 贺鹏康 齐鹏 武玉才 《电机与控制学报》 EI CSCD 北大核心 2023年第1期1-11,共11页
同步发电机结构复杂且运行环境多变,传统的故障诊断方法依赖于专家的先验知识,易受噪声干扰,难以准确识别且耗时耗力。本文提出一种基于多尺度核卷积神经网络(MSK-CNN)和多源机电信息融合的同步发电机故障诊断方法,直接从原始信号中自... 同步发电机结构复杂且运行环境多变,传统的故障诊断方法依赖于专家的先验知识,易受噪声干扰,难以准确识别且耗时耗力。本文提出一种基于多尺度核卷积神经网络(MSK-CNN)和多源机电信息融合的同步发电机故障诊断方法,直接从原始信号中自动学习有效的故障特征,同时在单个框架中对故障类型进行分类,为同步发电机提供端到端的故障诊断系统,无需额外的信号处理和专家经验。首先通过多尺度核算法在不同尺度上并行获取互补且丰富的诊断信息,提高特征学习能力。然后采用多源机电信息融合,选取相电压、转子振动、定子振动信号分别作为输入进行特征融合。最后以一台SDF-9型1对极同步发电机为实验对象进行实验验证,故障诊断准确率为99.64%,与传统故障诊断方法进行对比,显示了该方法的优越性。 展开更多
关键词 同步发电机 深度学习 多尺度核卷积神经网络 故障诊断 多源机电信息融合 多尺度融合
下载PDF
基于MDM-ResNet的脑肿瘤分类方法 被引量:5
12
作者 夏景明 邢露萍 +1 位作者 谈玲 宣大伟 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期212-219,共8页
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解... 脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类. 展开更多
关键词 脑肿瘤 深度神经网络(DNN) 残差网络(ResNet) 多尺寸卷积核模块 双通道池化层 多深度融合残差块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部