期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
玉米自然群体自交系农艺性状的多环境全基因组预测初探
1
作者 李园 范开建 +9 位作者 安泰 李聪 蒋俊霞 牛皓 曾伟伟 衡燕芳 李虎 付俊杰 李慧慧 黎亮 《植物学报》 CAS CSCD 北大核心 2024年第6期1041-1053,共13页
多环境田间测试是选育高产稳产品种的重要途径,但因其成本高逐渐成为植物育种的瓶颈问题。将稀疏测试与全基因组预测方法相结合可实现对未测表型的预测,进而减少田间测试的工作量和成本。利用244份玉米(Zeamays)自然群体自交系在两年(2... 多环境田间测试是选育高产稳产品种的重要途径,但因其成本高逐渐成为植物育种的瓶颈问题。将稀疏测试与全基因组预测方法相结合可实现对未测表型的预测,进而减少田间测试的工作量和成本。利用244份玉米(Zeamays)自然群体自交系在两年(2022年和2023年)两点(北京顺义和黑龙江密山)4个环境下,针对散粉期、株高、穗位高、穗长、穗行数和行粒数6个代表性农艺性状开展研究,比较了4种模型(Single、Across、M×E和R-norm)、2种训练群体组成方案(CV1和CV2)以及3种训练集抽样比例(0.5、0.7和0.9)对预测精度的影响。结果表明,上述6个农艺性状的平均预测精度分别为0.67、0.58、0.50、0.33、0.33和0.48;Single模型、Across模型、M×E模型和R-norm模型的平均预测精度分别为0.36、0.52、0.53和0.53;其中CV1各模型在不同性状中的预测精度范围在0.19–0.65之间,CV2预测精度范围在0.47–0.89之间;不同抽样比例比较显示,不同模型中训练集比例的提升对6个性状的预测精度提升有限,最大提升幅度仅为0.05。综上表明,在进行多环境预测时,利用CV2训练群体组成方案并在预测模型中纳入多个环境下的表型数据可提升预测精度。 展开更多
关键词 玉米 全基因组预测 多环境预测 训练集优化
原文传递
One compound approach combining factor-analytic model with AMMI and GGE biplot to improve multi-environment trials analysis 被引量:5
2
作者 Weihua Zhang Jianlin Hu +1 位作者 Yuanmu Yang Yuanzhen Lin 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期123-130,共8页
To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-envi... To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data. 展开更多
关键词 Additive main effect and multiplicative interaction Best linear unbiased prediction GGE biplot Genotype by environment interaction multi-environment trial
下载PDF
氯氧镁水泥混凝土中涂层钢筋的锈蚀劣化模型研究
3
作者 乔宏霞 杜杭威 +1 位作者 李元可 杨安 《建筑结构》 北大核心 2024年第3期65-70,共6页
为了推进钢筋氯氧镁水泥混凝土(magnesium oxychloride cement reinforced concrete,MOCRC)在西部地区的深度应用,设计模拟西部地区盐渍土环境、气候环境的室内加速破坏试验,研究涂层在多因素破坏试验环境下对钢筋的保护效果。利用电化... 为了推进钢筋氯氧镁水泥混凝土(magnesium oxychloride cement reinforced concrete,MOCRC)在西部地区的深度应用,设计模拟西部地区盐渍土环境、气候环境的室内加速破坏试验,研究涂层在多因素破坏试验环境下对钢筋的保护效果。利用电化学工作站测试试件的极化曲线和腐蚀电流密度,选用腐蚀电流密度作为Wiener随机退化过程的退化指标,建立随机退化过程的可靠度函数预测模型。结果表明:涂层在多因素试验环境下对钢筋的保护效果弱于纯浸泡试验环境下对钢筋的保护效果;通过可靠度函数寿命预测模型能够确定,MOCRC在不同浓度2%、4%、6%、8%氯化钠盐溶液室内多因素加速破坏试验环境下达到中等腐蚀破坏的时间分别为4000、3500、1400、400d。 展开更多
关键词 氯氧镁水泥混凝土 多因素环境 涂层钢筋 Wiener随机过程 可靠度寿命预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部