期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MEPM模型:基于深度学习的多变量厄尔尼诺-南方涛动预测模型
1
作者 方巍 张霄智 齐媚涵 《地球科学与环境学报》 CAS 北大核心 2024年第3期285-297,共13页
厄尔尼诺-南方涛动(ENSO)是发生在热带太平洋年际时间尺度的海-气相互作用的异常现象,并由Nino3.4指数表征其发生情况;除此之外,ENSO与众多极端气候事件密切相关。因此,有效的ENSO预测对于预防极端气候事件和深入研究全球气候变化具有... 厄尔尼诺-南方涛动(ENSO)是发生在热带太平洋年际时间尺度的海-气相互作用的异常现象,并由Nino3.4指数表征其发生情况;除此之外,ENSO与众多极端气候事件密切相关。因此,有效的ENSO预测对于预防极端气候事件和深入研究全球气候变化具有重要意义。然而,目前基于深度学习的ENSO预测大多数是预测一个指数或者单一变量,对于模拟多气候要素下的ENSO预测研究较少。通过提出一种利用多气候变量的ENSO预测模型——MEPM模型,其中包括多变量信息提取模块(MIEM)和时空融合模块(STFM),捕获不同气候变量在时空上的相互依赖性,进而提高ENSO预测的准确性。选取了纬向风应力异常(τ_(x))、经向风应力异常(τ_(y))、海表温度异常(SSTA)和海表下150 m温度异常(SSTA150)4个变量的距平值进行ENSO预测。结果表明:MEPM模型在提前11个月的Nino3.4指数相关技巧上分别比北美多模型集合中的动力预报系统CanCM4、CCSM3和GFDL-aer04高10%、20%和14%。此外,MEPM模型在中期Nino3.4指数相关技巧上显著优于其他深度学习模型,并可提供长达17个月的有效预测。 展开更多
关键词 气候变化 厄尔尼诺-南方涛动 多气候变量 深度学习 时空序列预测 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部