In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. A...In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. As a result, the integrated planning and optimal operation of a multi-carrier energy(MCE) system have aroused widespread concern for reasonable utilization of multiple energy resources and efficient accommodation of renewable energy sources. In this context, an integrated demand response(IDR) scheme is designed to coordinate the operation of power to gas(P2 G) devices, heat pumps,diversified storage devices and flexible loads within an extended modeling framework of energy hubs. Subsequently, the optimal dispatch of interconnected electricity,natural gas and heat systems is implemented considering the interactions among multiple energy carriers by utilizing the bi-level optimization method. Finally, the proposed method is demonstrated with a 4-bus multi-energy systemand a larger test case comprised of a revised IEEE 118-bus power system and a 20-bus Belgian natural gas system.展开更多
正交时频空(orthogonal time frequency space,OTFS)技术是近年来出现的一种新型多载波调制技术。在OTFS技术中,数据信号在时延—多普勒域产生,经过逆偶有限傅里叶变换实现信号的时频二维扩展,以解决正交频分复用(orthogonal frequency ...正交时频空(orthogonal time frequency space,OTFS)技术是近年来出现的一种新型多载波调制技术。在OTFS技术中,数据信号在时延—多普勒域产生,经过逆偶有限傅里叶变换实现信号的时频二维扩展,以解决正交频分复用(orthogonal frequency division multiplexing,OFDM)技术在时频双选信道下干扰严重的问题。介绍了OTFS技术的基本原理,通过仿真验证其相比于OFDM技术的优势。对其研究现状进行分析总结,指出OTFS技术中的多址接入、信道估计和线性接收机等研究方向目前有待解决的问题。对OTFS技术在雷达—通信一体化系统中的应用前景进行分析和展望。展开更多
Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. ...Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. The wide interest is primarily due to its appealing characteristics, such as the robust performances in different types of selective fading channels and a great deal of potential for secure communications. According to the literatures, the HC signal and SC or MC signal probability distributions are different. In particular, some benefits of this HC scheme are brought by the quasi-Gaussian distribution of WFRFT signals. However, until now researchers have only presented statistic properties through computer simulations, and the accurate expressions of signals are not derived yet. In this paper, we derive the accu- rate and rigorously established closed-form expressions of Probability Density Function (PDF) of WFRFT signal real and imaginary parts with a large number of QPSK subcarriers, and this PDF can describe the behavior of data modulated by WFRFT, avoiding the complex computation for extensive computer simulations. Furthermore, the components of PDF expression are described and analyzed, and it is revealed that the tendency of signal quasi-Gaussian changes with the increasing of the parameter a (a in (0,1]). To validate the analytical results, extensive simulations have been conducted, showing a very good match between the analytical results and the real situations. The contribution of this paper may be useful to deduce the closed form expressions of Bit Error Ratio (BER), the Complementary Cumulative Distribution Function (CCDF) of Peak to Average Power Ratio (PAPR), and other analytical studies which adopt the PDF.展开更多
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec...For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.展开更多
随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络的大规模商业化部署,超5G(Beyond 5G,B5G)和第六代移动通信技术(6th Generation Mobile Communication Technology,6G)逐渐成为研究热点。非正交多址接...随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络的大规模商业化部署,超5G(Beyond 5G,B5G)和第六代移动通信技术(6th Generation Mobile Communication Technology,6G)逐渐成为研究热点。非正交多址接入(Non-Orthogonal Multiple Access,NOMA)作为一种新型接入技术,有望成为B5G和6G网络中的关键多址接入技术。与此同时,多载波通信具有抗频率选择性衰落和高频谱效率的特点,因此将多载波技术与NOMA相结合成为B5G和6G的一个重要研究方向。从能效、功耗以及速率方面概述了多载波非协作NOMA、多载波协作NOMA的资源分配问题。探讨当前研究存在的一些缺陷与不足,并展望多载波NOMA系统资源分配问题的未来研究方向。展开更多
文摘In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. As a result, the integrated planning and optimal operation of a multi-carrier energy(MCE) system have aroused widespread concern for reasonable utilization of multiple energy resources and efficient accommodation of renewable energy sources. In this context, an integrated demand response(IDR) scheme is designed to coordinate the operation of power to gas(P2 G) devices, heat pumps,diversified storage devices and flexible loads within an extended modeling framework of energy hubs. Subsequently, the optimal dispatch of interconnected electricity,natural gas and heat systems is implemented considering the interactions among multiple energy carriers by utilizing the bi-level optimization method. Finally, the proposed method is demonstrated with a 4-bus multi-energy systemand a larger test case comprised of a revised IEEE 118-bus power system and a 20-bus Belgian natural gas system.
文摘正交时频空(orthogonal time frequency space,OTFS)技术是近年来出现的一种新型多载波调制技术。在OTFS技术中,数据信号在时延—多普勒域产生,经过逆偶有限傅里叶变换实现信号的时频二维扩展,以解决正交频分复用(orthogonal frequency division multiplexing,OFDM)技术在时频双选信道下干扰严重的问题。介绍了OTFS技术的基本原理,通过仿真验证其相比于OFDM技术的优势。对其研究现状进行分析总结,指出OTFS技术中的多址接入、信道估计和线性接收机等研究方向目前有待解决的问题。对OTFS技术在雷达—通信一体化系统中的应用前景进行分析和展望。
基金supported by the National Natural Science Foundation General Program of China(No.61201146)the National Basic Research Program of China(2013CB329003)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2015022)
文摘Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. The wide interest is primarily due to its appealing characteristics, such as the robust performances in different types of selective fading channels and a great deal of potential for secure communications. According to the literatures, the HC signal and SC or MC signal probability distributions are different. In particular, some benefits of this HC scheme are brought by the quasi-Gaussian distribution of WFRFT signals. However, until now researchers have only presented statistic properties through computer simulations, and the accurate expressions of signals are not derived yet. In this paper, we derive the accu- rate and rigorously established closed-form expressions of Probability Density Function (PDF) of WFRFT signal real and imaginary parts with a large number of QPSK subcarriers, and this PDF can describe the behavior of data modulated by WFRFT, avoiding the complex computation for extensive computer simulations. Furthermore, the components of PDF expression are described and analyzed, and it is revealed that the tendency of signal quasi-Gaussian changes with the increasing of the parameter a (a in (0,1]). To validate the analytical results, extensive simulations have been conducted, showing a very good match between the analytical results and the real situations. The contribution of this paper may be useful to deduce the closed form expressions of Bit Error Ratio (BER), the Complementary Cumulative Distribution Function (CCDF) of Peak to Average Power Ratio (PAPR), and other analytical studies which adopt the PDF.
基金Project(52108101)supported by the National Natural Science Foundation of ChinaProjects(2020GK4057,2021JJ40759)supported by the Hunan Provincial Science and Technology Department,China。
文摘For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.
文摘随着第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络的大规模商业化部署,超5G(Beyond 5G,B5G)和第六代移动通信技术(6th Generation Mobile Communication Technology,6G)逐渐成为研究热点。非正交多址接入(Non-Orthogonal Multiple Access,NOMA)作为一种新型接入技术,有望成为B5G和6G网络中的关键多址接入技术。与此同时,多载波通信具有抗频率选择性衰落和高频谱效率的特点,因此将多载波技术与NOMA相结合成为B5G和6G的一个重要研究方向。从能效、功耗以及速率方面概述了多载波非协作NOMA、多载波协作NOMA的资源分配问题。探讨当前研究存在的一些缺陷与不足,并展望多载波NOMA系统资源分配问题的未来研究方向。