期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多分支门控残差卷积神经网络的短期电力负荷预测 被引量:11
1
作者 樊江川 于昊正 +2 位作者 刘慧婷 杨丽君 安佳坤 《中国电力》 CSCD 北大核心 2022年第11期155-162,174,共9页
短期电力负荷预测是电力部门进行电网规划和运行调度的重要工作之一,针对负荷数据的时序性特征,为提升电力负荷预测精度,建立了一种基于多分支门控残差卷积神经网络(residualgatedconvolutional neural network,RGCNN)的短期电力负荷预... 短期电力负荷预测是电力部门进行电网规划和运行调度的重要工作之一,针对负荷数据的时序性特征,为提升电力负荷预测精度,建立了一种基于多分支门控残差卷积神经网络(residualgatedconvolutional neural network,RGCNN)的短期电力负荷预测模型。该模型首先采用多分支门控残差卷积神经网络对历史负荷的周周期特征、日周期特征、近邻特征进行深度特征提取;其次为增加模型的非线性拟合能力,采用注意力机制对权重进一步合理分配;最后通过归一化指数函数计算后输出负荷预测结果。使用2016年某电力竞赛数据进行实验,通过与4种常用模型对比,该模型预测结果的平均绝对百分误差(MAPE)评价指标下降了0.02%~0.70%,验证了该模型提高负荷预测精度的有效性。 展开更多
关键词 短期负荷预测 多分支神经网络 门控残差卷积神经网络 注意力机制 特征提取
下载PDF
基于多分支空谱特征增强的高光谱图像分类
2
作者 李铁 李文许 +1 位作者 王军国 高乔裕 《液晶与显示》 CAS CSCD 北大核心 2024年第6期844-855,共12页
为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和... 为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和深层空间特征信息,并引入注意力机制抑制噪声干扰。其次,设计一种改进多尺度空谱特征提取融合模块及结合双池化和空洞卷积的空间特征增强模块实现空谱特征增强,减少模型参数量和提高分类性能。最后,用全局平均池化层代替全连接层,进一步降低参数量,缓解模型过拟合问题。实验结果表明,在Indian Pines(10%训练样本)、Pavia University (5%训练样本)和Salinas(1%训练样本)数据集分别取得了0.990 7、0.997 5和0.994 7的总体分类精度。SSFE-MBACNN不仅能充分利用空谱特征信息,而且在有限样本下也取得了优秀的分类性能,明显高于其他对比方法。 展开更多
关键词 高光谱图像分类 特征增强 多分支特征提取 注意力机制 多尺度特征 双池化 空洞卷积
下载PDF
联合归一化模块和多分支特征的行人重识别
3
作者 任丹萍 董会升 +1 位作者 何婷婷 张春华 《计算机工程与设计》 北大核心 2024年第4期1233-1239,共7页
针对行人重识别技术中存在特征挖掘不充分的问题,提出一种联合归一化模块和多分支特征的行人重识别模型。在主干网络中嵌入注意力机制引导的实例归一化模块,减轻背景等杂波信息的影响。在双级特征融合模块对局部特征进行加权后再聚合形... 针对行人重识别技术中存在特征挖掘不充分的问题,提出一种联合归一化模块和多分支特征的行人重识别模型。在主干网络中嵌入注意力机制引导的实例归一化模块,减轻背景等杂波信息的影响。在双级特征融合模块对局部特征进行加权后再聚合形成对行人特征的更细节表达。联合平滑交叉熵损失、三元组损失以及跨分支特征蒸馏损失对网络进行优化。所提模型在Market-1501和DukeMTMC-ReID数据集上首位准确率分别达到了95.7%和89.2%。实验结果表明,该模型增强了对图像特征的提取。 展开更多
关键词 归一化 行人重识别 注意力机制 多分支特征 特征提取 特征蒸馏损失 三元组损失
下载PDF
多分支无锚框网络密集行人检测算法
4
作者 吕志轩 魏霞 黄德启 《光学精密工程》 EI CAS CSCD 北大核心 2023年第10期1532-1547,共16页
针对街道等多人流量场景图像中人员密集、姿态变化多、人体遮挡严重造成的行人检测漏检问题,提出一种多分支无锚框网络(MBAN)行人检测方法。首先,在检测模型主干网络后加入多分支网络结构用以检测行人的多个关键区域局部特征;然后,设计... 针对街道等多人流量场景图像中人员密集、姿态变化多、人体遮挡严重造成的行人检测漏检问题,提出一种多分支无锚框网络(MBAN)行人检测方法。首先,在检测模型主干网络后加入多分支网络结构用以检测行人的多个关键区域局部特征;然后,设计了关键区域之间的距离损失函数引导分支网络对行人的局部检测位置进行差异化学习,接下来为了提高分支网络对行人局部特征空间信息的理解能力,在Resnet50网络尾部加入四个上采样块构成沙漏结构(Hourglass);最后,设计了一种局部特征选择网络自适应抑制多分支输出的非最优值,消除预测时的冗余特征框。实验结果表明MBAN方法对多人流量场景行人检测的mAP值、F1值、Prec和Recall分别达到85.22%,0.87,80.07%和94.39%,证明该方法对密集人群检测能力较强,与其他行人检测算法相比有较高的召回率。 展开更多
关键词 无锚框网络 多分支网络 行人检测 局部特征 特征提取 特征选择
下载PDF
基于FVC-CNN模型的野外车辆声信号分类
5
作者 李翔 王艳 李宝清 《中国科学院大学学报(中英文)》 CSCD 北大核心 2023年第2期208-216,共9页
针对野外环境下单通道车辆声信号受风噪影响严重、分类性能较低的问题,提出一种基于声阵列4通道同步采集信号的一维卷积神经网络模型(FVC-CNN)。该模型借鉴注意力机制加权平均的思想对Inception网络结构进行改进,作为输入层有针对性地提... 针对野外环境下单通道车辆声信号受风噪影响严重、分类性能较低的问题,提出一种基于声阵列4通道同步采集信号的一维卷积神经网络模型(FVC-CNN)。该模型借鉴注意力机制加权平均的思想对Inception网络结构进行改进,作为输入层有针对性地提取4通道声信号多个不同时间尺度的特征,抑制噪声干扰,再根据不同车辆声信号特征分布特点,分别训练3个特征提取网络SWNet、LWNet和TNet来提取相应车辆的特征,最后对提取的特征进行多分支多维度的融合以供分类。在相同数据集上进行验证,实验结果表明,FVC-CNN模型总识别率可达94.22%,相较于传统方法识别率提高14.08%,取得了较好的分类效果。 展开更多
关键词 野外车辆信号分类 4通道声阵列输入 Inception结构 注意力机制 多分支特征提取 多分支多维度特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部