The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains thr...The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51879049)DK-I Dynamic Positioning System Console Project
文摘The problem of the unmanned surface vessel (USV) path planning in static and dynamic obstacle environments is addressed in this paper. Multi-behavior fusion based potential field method is proposed, which contains three behaviors: goal-seeking, boundary-memory following and dynamic-obstacle avoidance. Then, different activation conditions are designed to determine the current behavior. Meanwhile, information on the positions, velocities and the equation of motion for obstacles are detected and calculated by sensor data. Besides, memory information is introduced into the boundary following behavior to enhance cognition capability for the obstacles, and avoid local minima problem caused by the potential field method. Finally, the results of theoretical analysis and simulation show that the collision-free path can be generated for USV within different obstacle environments, and further validated the performance and effectiveness of the presented strategy.