5-axis machine tool plays an important role in high-speed and high-precision computer numerical control (CNC) machining of workpieces with complex shapes. A non-uniform rational B-spline (NURBS) interpolation form...5-axis machine tool plays an important role in high-speed and high-precision computer numerical control (CNC) machining of workpieces with complex shapes. A non-uniform rational B-spline (NURBS) interpolation format for 5-axis machining is pro- posed to adapt to the high speed machining (HSM). With this interpolation format, angles between orientation vectors are chosen as parameters of orientation B-spline constructed by an open controller to achieve reasonable orientation vectors in real-time interpolation process. Coordinated motion between linear axes and rotary axes is achieved by building a polynomial spline which relates interpolation arc lengths of position spline to angles of orientation spline. Algorithm routine of this interpolation format and its realization methods in the supported controller are discussed in detail. Finally, performance of the proposed NURBS in- terpolation format is demonstrated by a practical example.展开更多
Electronic line-shafting (ELS) is the most popular control strategy for printing machines with shaftless drives. A sliding-mode controller for tracking control is designed in this study as the first step towards an ...Electronic line-shafting (ELS) is the most popular control strategy for printing machines with shaftless drives. A sliding-mode controller for tracking control is designed in this study as the first step towards an improved ELS control scheme. This controller can eliminate the negative effects on synchronization precision resulting from the friction at low speed present in the pre-registration step of a shaftless driven printing machine. Moreover, it can eliminate the synchronization error of the printing process resulting from nonlinearities and load disturbances. Based on observer techniques, the unknown components of load torque and system parameter variations are estimated. On this basis, a novel ELS control method using equivalent load-torque observers is proposed. Experimental results demonstrate the effectiveness of the proposed control system for four-axis position control.展开更多
Solving the shortest tool length quickly under a known tool trajectory in multi-axis machining of complex channel parts is an urgent problem in industrial production. To solve this problem, a novel and efficient metho...Solving the shortest tool length quickly under a known tool trajectory in multi-axis machining of complex channel parts is an urgent problem in industrial production. To solve this problem, a novel and efficient method is proposed which is featured by extracting only a few necessary curves from the check surface instead of sampling the entire surface. By rotating and compressing the 3 D check surface relative to all tool postures, the boundaries of the area occupied by the 2 D compressed surfaces are the essential elements for determining the shortest tool length. A tracking-based numerical algorithm is introduced to efficiently solve the silhouette curves which are formed in compressing. To define the multi-taper shaped tool holding system(THS) which is commonly used in production, a characterization model for THS profile is established. A model for solving the shortest tool length is finally constructed based on the critical interference relationship between the THS profile and all compressed boundary curves. For acceleration, the boundary splines are segmented according to their knot vectors. Then a new concept called the axis-aligned tool length box(AATB) is introduced,which can provide a conservative range of tool length for a spline segment. By scanning the AATBs of all spline segments, the very few effective spline segments that may ultimately determine the shortest tool length are filtered out. This acceleration method makes the solution for the shortest tool length more focused and efficient. The results of experimental examples are also reported to validate the efficiency and accuracy of the proposed algorithm.展开更多
文摘5-axis machine tool plays an important role in high-speed and high-precision computer numerical control (CNC) machining of workpieces with complex shapes. A non-uniform rational B-spline (NURBS) interpolation format for 5-axis machining is pro- posed to adapt to the high speed machining (HSM). With this interpolation format, angles between orientation vectors are chosen as parameters of orientation B-spline constructed by an open controller to achieve reasonable orientation vectors in real-time interpolation process. Coordinated motion between linear axes and rotary axes is achieved by building a polynomial spline which relates interpolation arc lengths of position spline to angles of orientation spline. Algorithm routine of this interpolation format and its realization methods in the supported controller are discussed in detail. Finally, performance of the proposed NURBS in- terpolation format is demonstrated by a practical example.
基金supported by Natural Science Foundation of China(Nos.61773159 and 61473117)Hunan Provincial Natural Science Foundation of China(No.13JJ8020and 14JJ5024)Hunan Province Education Department(No.12A040)
文摘Electronic line-shafting (ELS) is the most popular control strategy for printing machines with shaftless drives. A sliding-mode controller for tracking control is designed in this study as the first step towards an improved ELS control scheme. This controller can eliminate the negative effects on synchronization precision resulting from the friction at low speed present in the pre-registration step of a shaftless driven printing machine. Moreover, it can eliminate the synchronization error of the printing process resulting from nonlinearities and load disturbances. Based on observer techniques, the unknown components of load torque and system parameter variations are estimated. On this basis, a novel ELS control method using equivalent load-torque observers is proposed. Experimental results demonstrate the effectiveness of the proposed control system for four-axis position control.
基金support of National Science and Technology Major Project of China (No. JPPTKF2016)。
文摘Solving the shortest tool length quickly under a known tool trajectory in multi-axis machining of complex channel parts is an urgent problem in industrial production. To solve this problem, a novel and efficient method is proposed which is featured by extracting only a few necessary curves from the check surface instead of sampling the entire surface. By rotating and compressing the 3 D check surface relative to all tool postures, the boundaries of the area occupied by the 2 D compressed surfaces are the essential elements for determining the shortest tool length. A tracking-based numerical algorithm is introduced to efficiently solve the silhouette curves which are formed in compressing. To define the multi-taper shaped tool holding system(THS) which is commonly used in production, a characterization model for THS profile is established. A model for solving the shortest tool length is finally constructed based on the critical interference relationship between the THS profile and all compressed boundary curves. For acceleration, the boundary splines are segmented according to their knot vectors. Then a new concept called the axis-aligned tool length box(AATB) is introduced,which can provide a conservative range of tool length for a spline segment. By scanning the AATBs of all spline segments, the very few effective spline segments that may ultimately determine the shortest tool length are filtered out. This acceleration method makes the solution for the shortest tool length more focused and efficient. The results of experimental examples are also reported to validate the efficiency and accuracy of the proposed algorithm.