针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提...针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.展开更多
同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在过去几十年中取得了惊人的进步,并在现实生活中实现了大规模的应用。由于精度和鲁棒性的不足,以及场景的复杂性,使用单一传感器(如相机、激光雷达)的SLAM系统往...同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在过去几十年中取得了惊人的进步,并在现实生活中实现了大规模的应用。由于精度和鲁棒性的不足,以及场景的复杂性,使用单一传感器(如相机、激光雷达)的SLAM系统往往无法适应目标需求,故研究者们逐步探索并改进多源融合的SLAM解决方案。本文从3个层面回顾总结该领域的现有方法:1)多传感器融合(由两种及以上传感器组成的混合系统,如相机、激光雷达和惯性测量单元,可分为松耦合、紧耦合);2)多特征基元融合(点、线、面、其他高维几何特征等与直接法相结合);3)多维度信息融合(几何、语义、物理信息和深度神经网络的推理信息等相融合)。惯性测量单元和视觉、激光雷达的融合可以解决视觉里程计的漂移和尺度丢失问题,提高系统在非结构化或退化场景中的鲁棒性。此外,不同几何特征基元的融合,可以大大减少有效约束的程度,并可为自主导航任务提供更多的有用信息。另外,数据驱动下的基于深度学习的策略为SLAM系统开辟了新的道路。监督学习、无监督学习和混合监督学习等逐渐应用于SLAM系统的各个模块,如相对姿势估计、地图表示、闭环检测和后端优化等。学习方法与传统方法的结合将是提升SLAM系统性能的有效途径。本文分别对上述多源融合SLAM方法进行分析归纳,并指出其面临的挑战及未来发展方向。展开更多
文摘针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.
文摘同时定位与地图构建(simultaneous localization and mapping,SLAM)技术在过去几十年中取得了惊人的进步,并在现实生活中实现了大规模的应用。由于精度和鲁棒性的不足,以及场景的复杂性,使用单一传感器(如相机、激光雷达)的SLAM系统往往无法适应目标需求,故研究者们逐步探索并改进多源融合的SLAM解决方案。本文从3个层面回顾总结该领域的现有方法:1)多传感器融合(由两种及以上传感器组成的混合系统,如相机、激光雷达和惯性测量单元,可分为松耦合、紧耦合);2)多特征基元融合(点、线、面、其他高维几何特征等与直接法相结合);3)多维度信息融合(几何、语义、物理信息和深度神经网络的推理信息等相融合)。惯性测量单元和视觉、激光雷达的融合可以解决视觉里程计的漂移和尺度丢失问题,提高系统在非结构化或退化场景中的鲁棒性。此外,不同几何特征基元的融合,可以大大减少有效约束的程度,并可为自主导航任务提供更多的有用信息。另外,数据驱动下的基于深度学习的策略为SLAM系统开辟了新的道路。监督学习、无监督学习和混合监督学习等逐渐应用于SLAM系统的各个模块,如相对姿势估计、地图表示、闭环检测和后端优化等。学习方法与传统方法的结合将是提升SLAM系统性能的有效途径。本文分别对上述多源融合SLAM方法进行分析归纳,并指出其面临的挑战及未来发展方向。