Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃sc...Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃scale permutation entropy(MPE)and morphology similarity distance(MSD)is proposed in this paper.Firstly,the MPE values of the original signals were calculated to characterize the complexity in different scales and they constructed feature vectors after normalization.Then,the MSD was employed to measure the distance among test samples from different fault types and the reference samples,and achieved classification with the minimum MSD.Finally,the proposed method was verified with two experiments concerning artificially seeded damage bearings and run⁃to⁃failure bearings,respectively.Different categories were considered for the two experiments and high classification accuracies were obtained.The experimental results indicate that the proposed method is effective and feasible in bearing fault diagnosis.展开更多
Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale inf...Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51505100)
文摘Bearings are crucial components in rotating machines,which have direct effects on industrial productivity and safety.To fast and accurately identify the operating condition of bearings,a novel method based on multi⁃scale permutation entropy(MPE)and morphology similarity distance(MSD)is proposed in this paper.Firstly,the MPE values of the original signals were calculated to characterize the complexity in different scales and they constructed feature vectors after normalization.Then,the MSD was employed to measure the distance among test samples from different fault types and the reference samples,and achieved classification with the minimum MSD.Finally,the proposed method was verified with two experiments concerning artificially seeded damage bearings and run⁃to⁃failure bearings,respectively.Different categories were considered for the two experiments and high classification accuracies were obtained.The experimental results indicate that the proposed method is effective and feasible in bearing fault diagnosis.
基金Sponsored by the Project of Multi Modal Monitoring Information Learning Fusion and Health Warning Diagnosis of Wind Power Transmission System(Grant No.61803329)the Research on Product Quality Inspection Method Based on Time Series Analysis(Grant No.201703A020)the Research on the Theory and Reliability of Group Coordinated Control of Hydraulic System for Large Engineering Transportation Vehicles(Grant No.51675461).
文摘Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.