期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于分步时空JITL-MKPLS的间歇过程故障监测 被引量:2
1
作者 高学金 孟令军 +1 位作者 王豪 高慧慧 《高校化学工程学报》 EI CAS CSCD 北大核心 2021年第1期127-139,共13页
针对多阶段时变的间歇过程难以用全局模型准确描述生产过程的动态变化及传统局部建模每个工作点都需要重新筛选样本建模导致计算量较大的问题,提出一种分步时空即时学习的局部建模策略。采用仿射传播(AP)聚类的方式对历史数据样本集中... 针对多阶段时变的间歇过程难以用全局模型准确描述生产过程的动态变化及传统局部建模每个工作点都需要重新筛选样本建模导致计算量较大的问题,提出一种分步时空即时学习的局部建模策略。采用仿射传播(AP)聚类的方式对历史数据样本集中的数据进行初步分类,在当前输入样本数据到达后,确定当前样本数据所属的类别,在此类别所限定的子数据样本集中使用时间和空间相结合的即时学习策略确定出局部相似样本,建立多向核偏最小二乘监测模型。将该算法在青霉素发酵仿真数据和大肠杆菌发酵过程生产数据上进行验证,结果表明,所提方法不仅减少了不必要的计算量,还能够更加精准即时地进行故障监测。 展开更多
关键词 时空即时学习 分步 多向核偏最小二乘 局部建模 故障监测
下载PDF
基于统计量模式分析的MKPLS间歇过程监控与质量预报 被引量:12
2
作者 常鹏 王普 +2 位作者 高学金 齐咏生 张亚潮 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第6期1409-1416,共8页
传统MKPLS是对数据矩阵的协方差矩阵进行分解,没有利用数据的高阶统计量等有用信息,在进行特征提取时会造成数据有用信息的丢失,导致故障识别效果差。为了解决此问题,提出了统计量模式分析(SPA)与多向核偏最小二乘(MKPLS)相结合的多向... 传统MKPLS是对数据矩阵的协方差矩阵进行分解,没有利用数据的高阶统计量等有用信息,在进行特征提取时会造成数据有用信息的丢失,导致故障识别效果差。为了解决此问题,提出了统计量模式分析(SPA)与多向核偏最小二乘(MKPLS)相结合的多向统计量模式分析的核偏最小二乘方法(MSPAKPLS)。该方法首先引入滑动窗技术构造样本的不同阶次统计量,将数据从原始的数据空间映射到统计量样本空间,然后利用核函数将统计量样本空间映射到高维核空间进行偏最小二乘分析,并对产品质量进行预测。最后将该方法应用到工业青霉素发酵过程中,并与传统方法进行比较,发现该方法具有更好的监控性能和预测性能。 展开更多
关键词 过程监控 多向核偏最小二乘(MKPLS) 多向统计量模式分析的核偏最小二乘(MSPAKPLS) 间歇过程
下载PDF
基于多向核熵偏最小二乘的间歇过程监测及质量预测 被引量:2
3
作者 常鹏 高学金 王普 《北京工业大学学报》 CAS CSCD 北大核心 2014年第6期851-856,共6页
针对间歇过程数据的批次不等长和强非线性的特点,结合核偏最小二乘和核熵分析,提出了多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)的过程监测及质量预测方法.该方法将三维历史数据沿新的展开方式展开,... 针对间歇过程数据的批次不等长和强非线性的特点,结合核偏最小二乘和核熵分析,提出了多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)的过程监测及质量预测方法.该方法将三维历史数据沿新的展开方式展开,克服了批次不等长和数据缺失的问题,通过核映射将过程数据从低维输入空间映射到高维特征空间,实现变量之间非线性相关关系的线性转换,解决了数据的非线性特性;根据核熵的大小将特征值和特征向量进行排序并对数据进行降维,弥补了MKPLS方法只按照数据特征值的最大化进行降维的不足.同时,引入核特征提取算法降低核空间的计算量,使其能够在线应用.数值实例和实际工业过程数据的验证效果表明:MKEPLS方法不仅能对故障进行有效监控,提高故障的报警率,同时还能对最终产品质量进行预测. 展开更多
关键词 间歇过程 多向核熵偏最小二乘 过程监测 质量预测
下载PDF
基于质量相关的间歇过程故障监测及故障变量追溯 被引量:2
4
作者 常鹏 王普 +1 位作者 高学金 程峥 《北京工业大学学报》 CAS CSCD 北大核心 2015年第5期668-673,共6页
针对多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法... 针对多向核熵偏最小二乘(multi-way kernel entropy partial least squares,MKEPLS)利用的是数据的一阶和二阶统计特性未考虑数据的高阶统计特性,在进行特征提取时会造成有用数据丢失的问题,提出基于高阶统计量的多向核熵偏最小二乘方法(higher order statistics multi-way kernel entropy partial least squares,HOS-MKEPLS).首先,通过构造样本的高阶统计量将数据从原始的数据空间映射到高阶统计量样本空间.然后,再建立MKEPLS监控模型进行质量相关的故障监控,当监控到有故障发生时进行故障变量的追溯.最后,将该方法应用到工业青霉素发酵过程的监测中并与MKEPLS进行比较.结果表明:该方法具有更好的监控和故障识别性能. 展开更多
关键词 间歇过程 多向核熵偏最小二乘 高阶统计量 故障监测 故障变量追溯
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部