Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation disp...Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.展开更多
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
耕地多功能价值的时空演变与权衡-协同关系测度对于深化耕地可持续利用和管理具有重要意义。该研究以经济快速发展地区浙江省为例,采用价值量化方法对2000、2010和2015年浙江省耕地多功能进行价值评估并分析其时空变化特征。运用Spearma...耕地多功能价值的时空演变与权衡-协同关系测度对于深化耕地可持续利用和管理具有重要意义。该研究以经济快速发展地区浙江省为例,采用价值量化方法对2000、2010和2015年浙江省耕地多功能进行价值评估并分析其时空变化特征。运用Spearman秩相关系数法、双变量空间自相关模型以及可拓展随机性环境影响评估(StochasticImpactsby Regression on Population,Affluence and Technology,STIRPAT)模型探究耕地多功能之间的权衡-协同关系及影响因素。结果表明:1)2000—2015年浙江省耕地多功能总价值下降,地均耕地多功能价值呈现先下降后上升的趋势。其中气体调节、水源涵养和社会保障功能价值下降明显,食物生产和美学景观功能价值增加;耕地多功能总价值在空间上呈现北高南低的分布格局,2000—2015年大部分县市耕地多功能总价值均有不同程度的下降,西南山地丘陵区耕地多功能总价值有所提升。2)浙江省耕地多功能之间主要表现为协同关系,各项功能之间的协同-权衡关系存在空间异质性;2000—2015年,浙江省耕地多功能协同关系总体减弱,在空间上主要表现为高值协同区减少。3)城镇居民可支配收入和地均农业机械总动力对耕地多功能总价值有负面影响,农村居民可支配收入增加有助于耕地多功能总价值的提升。该研究成果可为科学划定耕地利用与保护区,促进耕地多功能的协同利用和提升耕地资源价值提供科学依据。展开更多
基金Foundation items: High-technology Research and Development Programme of China (2007AA03Z544) Aeronautical Science Foundation of China (20075221001)
文摘Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.
文摘耕地多功能价值的时空演变与权衡-协同关系测度对于深化耕地可持续利用和管理具有重要意义。该研究以经济快速发展地区浙江省为例,采用价值量化方法对2000、2010和2015年浙江省耕地多功能进行价值评估并分析其时空变化特征。运用Spearman秩相关系数法、双变量空间自相关模型以及可拓展随机性环境影响评估(StochasticImpactsby Regression on Population,Affluence and Technology,STIRPAT)模型探究耕地多功能之间的权衡-协同关系及影响因素。结果表明:1)2000—2015年浙江省耕地多功能总价值下降,地均耕地多功能价值呈现先下降后上升的趋势。其中气体调节、水源涵养和社会保障功能价值下降明显,食物生产和美学景观功能价值增加;耕地多功能总价值在空间上呈现北高南低的分布格局,2000—2015年大部分县市耕地多功能总价值均有不同程度的下降,西南山地丘陵区耕地多功能总价值有所提升。2)浙江省耕地多功能之间主要表现为协同关系,各项功能之间的协同-权衡关系存在空间异质性;2000—2015年,浙江省耕地多功能协同关系总体减弱,在空间上主要表现为高值协同区减少。3)城镇居民可支配收入和地均农业机械总动力对耕地多功能总价值有负面影响,农村居民可支配收入增加有助于耕地多功能总价值的提升。该研究成果可为科学划定耕地利用与保护区,促进耕地多功能的协同利用和提升耕地资源价值提供科学依据。