A complete scheme for solving the key scientific problems of how to make concrete sequence placement scheme of high arch dam reasonable and feasible and how to meet the need of construction process was presented.First...A complete scheme for solving the key scientific problems of how to make concrete sequence placement scheme of high arch dam reasonable and feasible and how to meet the need of construction process was presented.First,based on a coupling analysis of concrete sequence placement system of high arch dam,a mathematical model considering complex construction constraints was established.Second,a multi-scheme computational analysis method for concrete sequence placement of high arch dam was proposed based on dynamic simulation.Third,a multi-scheme evaluation method for concrete sequence placement was put forward based on analytic hierarchy process.Fourth,feedback guidance for progress control and management in the high arch dam construction process was proposed.Finally,these methods were applied to a practical project to show that the methods can analyze and evaluate multi-scheme for concrete sequence placement of high arch dam effectively,optimize the process of dam concrete sequence placement,and recommend engineering measures.These methods provide new theoretical principles and technical measures for real-time progress control in the high arch dam construction.展开更多
We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Za...We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky-Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50539120)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No. 51021004)the National Natural Science Foundation of China(Grant No.90815019)
文摘A complete scheme for solving the key scientific problems of how to make concrete sequence placement scheme of high arch dam reasonable and feasible and how to meet the need of construction process was presented.First,based on a coupling analysis of concrete sequence placement system of high arch dam,a mathematical model considering complex construction constraints was established.Second,a multi-scheme computational analysis method for concrete sequence placement of high arch dam was proposed based on dynamic simulation.Third,a multi-scheme evaluation method for concrete sequence placement was put forward based on analytic hierarchy process.Fourth,feedback guidance for progress control and management in the high arch dam construction process was proposed.Finally,these methods were applied to a practical project to show that the methods can analyze and evaluate multi-scheme for concrete sequence placement of high arch dam effectively,optimize the process of dam concrete sequence placement,and recommend engineering measures.These methods provide new theoretical principles and technical measures for real-time progress control in the high arch dam construction.
基金Supported by the National Baslc Research Programme under Grant No 2005CB321703, and the National Natural Science Foundation of China under Grant Nos 40221503, 10471067 and 40405019.
文摘We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky-Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.