Plutella xylostella (L.) (Plutellidae) is an important agricultural pest throughout the world. In this study, the morphology of antennal and mouthpart sensilla in the larvae and adults of P. xylostella (L.) was ...Plutella xylostella (L.) (Plutellidae) is an important agricultural pest throughout the world. In this study, the morphology of antennal and mouthpart sensilla in the larvae and adults of P. xylostella (L.) was observed by using a scanning electron microscope. The larval antennae possess six sensilla basiconica, two sensilla chaetica and one sensillum styloconicum. Larval mouthparts possess six types of sensilla: sensilla chaetica, sensilla digitiformia, sensilla epipharyngeal, sensilla basiconica, sensilla styloconica and sensilla placodea. In the adult, seven types of sensilla are found on the antennae in males and six types of sensilla (sensilla basiconica absent) occur in females. Sexual dimorphism is also found in the number and size of these sensilla on the antennae of adults. We describe for the first time the five types of sensilla on the mouthparts of the adult of P. xylostella. This study provides useful information for further research into the function of these sensilla, and better understanding the behavioral mechanisms involved in pest control.展开更多
Given the technical problems of low maize stubble breaking efficiency,large cutting torque and high power consumption faced during springtime no-till planting in Northeast China,we designed a high-performance coupling...Given the technical problems of low maize stubble breaking efficiency,large cutting torque and high power consumption faced during springtime no-till planting in Northeast China,we designed a high-performance coupling bionic stubble cutting device capable by integrating the structure(multi-segment and serrate)and cutting mode(isokinetic and symmetrical)of locust mouthparts.Methods of bionic construction,mechanism design,theoretical analysis,parameter optimization,Arduino systems and intelligent control were combined to design a planetary gear mechanism and an intelligent speed control system.In particular,the bionic cutting blade could reconstruct the multi-segment and serrate structure of locust mouthparts,while the planetary gear mechanism and the intelligent speed control system jointly comprised the bionic drive system,which could simulate the isokinetic and symmetrical cutting mode,thereby bionically coupling morphological structures and movement patterns.Analysis of comparative tests showed the coupling bionic cutting device could reduce the cutting torque by 26.6%-31.6%and the power consumption by 21.9%-26.1%.This work confirmed that coupling bionic method can significantly improve the stubble cutting efficiency,which was a valuable contribution to the design of stubble cutting device for no-till planter.展开更多
基金supported by the China Postdoctoral Science Foundation (2013M542388)the Postdoctoral Scientific Research Project in Shaanxi Province,China+1 种基金the Fundamental Research Funds for the Central Universities of China (2014YB087)the Agricultural Science and Technology Innovation in Shaanxi Province,China (2016NY-058)
文摘Plutella xylostella (L.) (Plutellidae) is an important agricultural pest throughout the world. In this study, the morphology of antennal and mouthpart sensilla in the larvae and adults of P. xylostella (L.) was observed by using a scanning electron microscope. The larval antennae possess six sensilla basiconica, two sensilla chaetica and one sensillum styloconicum. Larval mouthparts possess six types of sensilla: sensilla chaetica, sensilla digitiformia, sensilla epipharyngeal, sensilla basiconica, sensilla styloconica and sensilla placodea. In the adult, seven types of sensilla are found on the antennae in males and six types of sensilla (sensilla basiconica absent) occur in females. Sexual dimorphism is also found in the number and size of these sensilla on the antennae of adults. We describe for the first time the five types of sensilla on the mouthparts of the adult of P. xylostella. This study provides useful information for further research into the function of these sensilla, and better understanding the behavioral mechanisms involved in pest control.
基金This work was supported by the project of National Key R&D Program of China(No.2018YFA0703300)and the National Natural Science Foundation of China(Grant no.51705194)+1 种基金and Science and Technology Project of Jilin(20190301023NY)and National Natural Science Foundation of Jilin(20180101090JC).
文摘Given the technical problems of low maize stubble breaking efficiency,large cutting torque and high power consumption faced during springtime no-till planting in Northeast China,we designed a high-performance coupling bionic stubble cutting device capable by integrating the structure(multi-segment and serrate)and cutting mode(isokinetic and symmetrical)of locust mouthparts.Methods of bionic construction,mechanism design,theoretical analysis,parameter optimization,Arduino systems and intelligent control were combined to design a planetary gear mechanism and an intelligent speed control system.In particular,the bionic cutting blade could reconstruct the multi-segment and serrate structure of locust mouthparts,while the planetary gear mechanism and the intelligent speed control system jointly comprised the bionic drive system,which could simulate the isokinetic and symmetrical cutting mode,thereby bionically coupling morphological structures and movement patterns.Analysis of comparative tests showed the coupling bionic cutting device could reduce the cutting torque by 26.6%-31.6%and the power consumption by 21.9%-26.1%.This work confirmed that coupling bionic method can significantly improve the stubble cutting efficiency,which was a valuable contribution to the design of stubble cutting device for no-till planter.