期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合并行投票决策树和半监督学习的鼠标轨迹识别方法 被引量:2
1
作者 孟广婷 王红 刘海燕 《小型微型计算机系统》 CSCD 北大核心 2018年第9期2050-2055,共6页
本文针对已有鼠标轨迹识别方法存在的问题,提出了一种基于并行投票决策树的半监督鼠标轨迹识别方法.首先,本文对鼠标轨迹进行分析,根据多尺度特征思想提取出包括局部轨迹在内的105个特征,并对鼠标轨迹特征进行了划分.其次,本文提出了鼠... 本文针对已有鼠标轨迹识别方法存在的问题,提出了一种基于并行投票决策树的半监督鼠标轨迹识别方法.首先,本文对鼠标轨迹进行分析,根据多尺度特征思想提取出包括局部轨迹在内的105个特征,并对鼠标轨迹特征进行了划分.其次,本文提出了鼠标轨迹识别的半监督学习方法,避免过拟合和数据噪声的影响.最后,为了提高方法的效率,本文提出并行投票决策树模型,训练多尺度特征,对人的鼠标轨迹和机器鼠标轨迹进行分类.实验结果显示,本文方法具有较好的性能. 展开更多
关键词 鼠标轨迹识别 多尺度 半监督 并行投票决策树
下载PDF
基于BP神经网络的鼠标轨迹识别技术 被引量:2
2
作者 陈喆 周雷 《电脑知识与技术》 2013年第1期130-132,共3页
鼠标与电脑交互通常采用点击的方式,而由鼠标画出特定的轨迹,由轨迹识别算法识别出所属类别,并执行相应的命令,即鼠标手势,这是一种更高效的交互方式。轨迹识别属于分类问题,该文采用BP神经网络技术实现鼠标轨迹的识别。针对人工生成训... 鼠标与电脑交互通常采用点击的方式,而由鼠标画出特定的轨迹,由轨迹识别算法识别出所属类别,并执行相应的命令,即鼠标手势,这是一种更高效的交互方式。轨迹识别属于分类问题,该文采用BP神经网络技术实现鼠标轨迹的识别。针对人工生成训练样本耗时、低效的缺点,该文提出了使用原型轨迹的变换版本扩充训练样本集(提取角度特征,给原型轨迹加噪声)。最后训练11种轨迹,并对BP神经网络识别性能做测试,实验结果表明识别率达到92.9%。 展开更多
关键词 BP神经网络 鼠标轨迹识别 训练样本生成
下载PDF
基于特征组分层与半监督学习的鼠标轨迹识别 被引量:1
3
作者 康璐璐 范兴容 +2 位作者 王茜竹 杨晓雅 明蕊 《计算机工程》 CAS CSCD 北大核心 2021年第4期277-284,共8页
传统时间序列分类方法存在鼠标轨迹特征挖掘不充分、数据不平衡与标记样本量少等问题,造成识别效果较差。结合特征组分层和半监督学习,提出一种鼠标轨迹识别方法。通过不同视角构建有层次的鼠标轨迹特征组,并借鉴半监督学习的思想,利用... 传统时间序列分类方法存在鼠标轨迹特征挖掘不充分、数据不平衡与标记样本量少等问题,造成识别效果较差。结合特征组分层和半监督学习,提出一种鼠标轨迹识别方法。通过不同视角构建有层次的鼠标轨迹特征组,并借鉴半监督学习的思想,利用多个随机森林模型对未标记样本进行伪标记,且将抽取标签预测一致且置信度较高的部分样本加入到训练集中。基于基础特征组和辅助特征组,在扩充后的训练集上训练随机森林模型,以实现鼠标轨迹的人机识别。实验结果表明,该方法可有效识别鼠标轨迹,且精确率、召回率与调和均值分别达到97.83%、94.72%和96.56%。 展开更多
关键词 鼠标轨迹识别 特征组分层 半监督学习 随机森林模型 不平衡数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部