Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c...Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human展开更多
Elevational gradients are powerful ‘natural laboratory' for testing the responses of microbes to geophysical influences. Microbial communities are normally composed of a few abundant and many rare taxa. Abundant ...Elevational gradients are powerful ‘natural laboratory' for testing the responses of microbes to geophysical influences. Microbial communities are normally composed of a few abundant and many rare taxa. Abundant and rare taxa play different ecological roles in kinds of environments, but how their diversity and composition patterns response to elevation gradients is still poorly elucidated. In this study, we investigated the elevational patterns of abundant and rare bacterial diversity and composition in a mountain stream from 712 to 3435 m at Gangrigabu Mountain on the Tibetan Plateau, China. Our results revealed abundant and rare bacteria had similar decreasing elevation trend of alpha diversity, and both of them showed a significant elevational distance-decay relationship. However, the turnover rate of the elevational distance-decay of rare bacteria was higher than that of abundant bacteria. The species-abundance distribution patterns of rare taxonomic composition were associated with the elevational gradient, while most of abundant bacterial clades did not display any relationships with elevation.Our results suggested that rare bacteria were more sensitive to changes in elevation gradient.展开更多
Based on the flood area hydrodynamic model, this paper backs the analysis of the risk warning point of the Mayang Stream in the typical flood process, to determine the disaster-caused critical precipitation and the co...Based on the flood area hydrodynamic model, this paper backs the analysis of the risk warning point of the Mayang Stream in the typical flood process, to determine the disaster-caused critical precipitation and the corresponding flood risk map at different depths of submergence. The result is used as the mountain torrent disaster monitoring and warning indicators and risk assessment of the Mayang Stream. Then based on the flood risk warning service system of small and middle rivers of Fujian Province, the risk warning service of mountain torrent disaster is developed during the impact time of Meranti in 2016. After the process of typhoon, the mountain torrent caused by Meranti was back analyzed by using the decided flood area model, then compared with the results of filed investigation to verify the accuracy of the disaster-caused critical precipitation forecast and the effect of monitoring and early warning services. The result shows that the cause of Mayang Stream’s mountain torrent disaster of the typhoon Meranti is the heavy rainfall and the strong wind. The highest mountain torrent disaster was forecasted by the refine precipitation based on the disaster-caused critical rainfall of the Mayang Stream. The simulated flood scenarios and the field trip’s results were basically matched in upstream and not matched in the downstream. The post-mountain simulation assessment also showed that the flood inundation range basically matched with reality, but the flood process was biased. The reason was that in addition to the differences between the surface rainfall forecast and the real situation, many actual situations cannot be ignored. For example, Meranti caused serious damage to trees, increased river blockages, resulting in changes in flood inundation time and depth, affecting the flood process. It showed the tourism development would cause the river way blocking and increase the risk of flood. In order to prevent and reduce the flood disasters accurately and effectively, the flood risk forecast and the disaste展开更多
基金supported by an internal grant of the University of Ostrava[SGS10/PřF/2021-Specificity of fluvial landscape in the context of historical and future changes].
文摘Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human
基金financially supported by the International Partnership Program of Chinese Academy of Sciences(Grant No.131C11KYSB20160061)the National Natural Science Foundation of China(Grant No.41425004)
文摘Elevational gradients are powerful ‘natural laboratory' for testing the responses of microbes to geophysical influences. Microbial communities are normally composed of a few abundant and many rare taxa. Abundant and rare taxa play different ecological roles in kinds of environments, but how their diversity and composition patterns response to elevation gradients is still poorly elucidated. In this study, we investigated the elevational patterns of abundant and rare bacterial diversity and composition in a mountain stream from 712 to 3435 m at Gangrigabu Mountain on the Tibetan Plateau, China. Our results revealed abundant and rare bacteria had similar decreasing elevation trend of alpha diversity, and both of them showed a significant elevational distance-decay relationship. However, the turnover rate of the elevational distance-decay of rare bacteria was higher than that of abundant bacteria. The species-abundance distribution patterns of rare taxonomic composition were associated with the elevational gradient, while most of abundant bacterial clades did not display any relationships with elevation.Our results suggested that rare bacteria were more sensitive to changes in elevation gradient.
文摘Based on the flood area hydrodynamic model, this paper backs the analysis of the risk warning point of the Mayang Stream in the typical flood process, to determine the disaster-caused critical precipitation and the corresponding flood risk map at different depths of submergence. The result is used as the mountain torrent disaster monitoring and warning indicators and risk assessment of the Mayang Stream. Then based on the flood risk warning service system of small and middle rivers of Fujian Province, the risk warning service of mountain torrent disaster is developed during the impact time of Meranti in 2016. After the process of typhoon, the mountain torrent caused by Meranti was back analyzed by using the decided flood area model, then compared with the results of filed investigation to verify the accuracy of the disaster-caused critical precipitation forecast and the effect of monitoring and early warning services. The result shows that the cause of Mayang Stream’s mountain torrent disaster of the typhoon Meranti is the heavy rainfall and the strong wind. The highest mountain torrent disaster was forecasted by the refine precipitation based on the disaster-caused critical rainfall of the Mayang Stream. The simulated flood scenarios and the field trip’s results were basically matched in upstream and not matched in the downstream. The post-mountain simulation assessment also showed that the flood inundation range basically matched with reality, but the flood process was biased. The reason was that in addition to the differences between the surface rainfall forecast and the real situation, many actual situations cannot be ignored. For example, Meranti caused serious damage to trees, increased river blockages, resulting in changes in flood inundation time and depth, affecting the flood process. It showed the tourism development would cause the river way blocking and increase the risk of flood. In order to prevent and reduce the flood disasters accurately and effectively, the flood risk forecast and the disaste