Through bioinformatic data mining, 10 SnRK2 and 31 CIPK genes were identified from sorghum genome. They are unevenly distributed in the sorghum chromosomes. Most SnRK2 genes have 8 introns, while the CIPK genes have a...Through bioinformatic data mining, 10 SnRK2 and 31 CIPK genes were identified from sorghum genome. They are unevenly distributed in the sorghum chromosomes. Most SnRK2 genes have 8 introns, while the CIPK genes have a few (no intron or less than 3 introns) or more than I0 introns. Phylogenetic analysis revealed that SnRK2 genes belong to one cluster and CIPK genes form the other independent cluster. The sorghum SnRK2s are subgrouped into three parts, and CIPK into five parts. More than half SnRK2 and CIPK genes present in homologous pairs, suggesting gene duplication may be due to the amplification of SnRK family genes. The kinase domains of SnRK2 family are highly conserved with 88.40% identity, but those of the CIPK family are less conserved with 63.72% identity. And the identity of sorghum CBLinteracting NAF domains of CIPKs is 61.66%. What's more, regarding to the sorghum SnRK2 and CIPK kinases, they are characterized with distinct motifs and their subcellular localization is not necessarily the same, which suggests they may be divergent in functions. Due to less conserved sequences, complex subcellular localization, and more family members, sorghum CIPK genes may play more flexible and multiple biological functions. According to the phylogenetic analysis of SnRK genes and SnRK functional studies in other plants, it is speculated that sorghum SnRK2 and CIPK genes may play important roles in stress response, growth and development.展开更多
The Dof (DNA binding with One Finger) family encoding single zinc finger proteins has been known as a family of plant-specific transcription factors. These transcription factors are involved in a variety of function...The Dof (DNA binding with One Finger) family encoding single zinc finger proteins has been known as a family of plant-specific transcription factors. These transcription factors are involved in a variety of functions of importance for different biological processes in plants. In the current study, we identified 34 Dof family genes in tomato (Solanum lycopersicum L.), distributed on 11 chromosomes. A complete overview of SlDof genes in tomato is presented, including the gene structures, chromosome locations, phylogeny, protein motifs and evolution pattern. Phylogenetic analysis of 34 SlDof proteins resulted in four classes constituting six clusters. In addition, a comparative analysis between these genes in tomato, Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.) was also performed. The tomato Dof family expansion has been dated to recent duplication events, and segmental duplication is predominant for the SlDof genes. Furthermore, the SlDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth conditions. This is the first step towards genome-wide analyses of the Dof genes in tomato. Our study provides a very useful reference for cloning and functional analysis of the members of this gene family in tomato and other species.展开更多
Mounting evidence supports an important role of chemokines, produced by spinal cord astrocytes, in promoting central sensitization and chronic pain. In particular, CCL2 (C-C motif chemokine ligand 2) has been shown ...Mounting evidence supports an important role of chemokines, produced by spinal cord astrocytes, in promoting central sensitization and chronic pain. In particular, CCL2 (C-C motif chemokine ligand 2) has been shown to enhance N-methyl-D-aspartate (NMDA)-induced currents in spinal outer lamina II (Iio) neurons. However, the exact molecular, synaptic, and cellular mechanisms by which CCL2 modulates central sensitization are still unclear. We found that spinal injection of the CCR2 antagonist RS504393 attenuated CCL2- and inflammation-induced hyperalgesia. Single-cell RT-PCR revealed CCR2 expres- sion in excitatory vesicular glutamate transporter subtype 2-positive (VGLUT2+) neurons. CCL2 increased NMDA- induced currents in CCR2+/VGLUT2+ neurons in lamina IIo; it also enhanced the synaptic NMDA currents evoked by dorsal root stimulation; and furthermore, it increased the total and synaptic NMDA currents in somatostatin- expressing excitatory neurons. Finally, intrathecal RS504393 reversed the long-term potentiation evoked in the spinal cord by C-fiber stimulation. Our findings suggest that CCL2 directly modulates synaptic plasticity in CCR2- expressing excitatory neurons in spinal lamina Iio, and this underlies the generation of central sensitization in patho- logical pain.展开更多
Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZlP transcription ...Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZlP transcription factors are known to be involved in nutrient and/or stress signaling. An Arabidopsis Sl-group bZlP gene, AtbZIP1, was identified as a sugar-sensitive gene in a previous gene expression profiling study (Plant Cell. 16, 2128-2150). In this report, we show that the expression of AtbZIP1 is repressed by sugars in a fast, sensitive, and reversible way. The sugar repression of Atb- ZIP1 is affected by a conserved sugar signaling component, hexokinase. Besides being a sugar-regulated gene, AtbZIP1 can mediate sugar signaling and affect gene expression, plant growth, and development. When carbon nutrients are limited, gain or loss of function of AtbZlP1 causes changes in the rates of early seedling establishment. Results of phenotypic analyses indicate that AtbZlP1 acts as a negative regulator of early seedling growth. Using gain- and loss-of-function plants in a microarray analysis, two sets of putative AtbZIP1-regulated genes have been identified. Among them, sugar-responsive genes are highly over-represented, implicating a role of AtbZlP1 in sugar-mediated gene expression. Using yeast two-hybrid (Y-2-H) screens and bimolecular fluorescence complementation (BiFC) analyses, we are able to recapitulate extensive C/S1 AtbZlP protein interacting network in living cells. Finally, we show that AtbZIP1 can bind ACGT-based motifs in vitro and that the binding characteristics appear to be affected by the heterodimerization between AtbZlP1 and the C-group AtbZIPs, including AtbZlP10 and AtbZlP63.展开更多
During the floral transition the shoot apical meristem changes its identity from a vegetative to an inflorescence state. This change in identity can be promoted by external signals, such as inductive photoperiod condi...During the floral transition the shoot apical meristem changes its identity from a vegetative to an inflorescence state. This change in identity can be promoted by external signals, such as inductive photoperiod conditions or vernalization, and is accompanied by changes in expression of key developmental genes. The change in meristem identity is usually not reversible, even if the inductive signal occurs only transiently. This implies that at least some of the key genes must possess an intrinsic memory of the newly acquired expression state that ensures irreversibility of the process. In this review, we discuss different molecular scenarios that may underlie a molecular memory of gene expression.展开更多
基金supported by the National 973 Program of China (2007CB109000)the National Natural Science Foundation of China (30871577)
文摘Through bioinformatic data mining, 10 SnRK2 and 31 CIPK genes were identified from sorghum genome. They are unevenly distributed in the sorghum chromosomes. Most SnRK2 genes have 8 introns, while the CIPK genes have a few (no intron or less than 3 introns) or more than I0 introns. Phylogenetic analysis revealed that SnRK2 genes belong to one cluster and CIPK genes form the other independent cluster. The sorghum SnRK2s are subgrouped into three parts, and CIPK into five parts. More than half SnRK2 and CIPK genes present in homologous pairs, suggesting gene duplication may be due to the amplification of SnRK family genes. The kinase domains of SnRK2 family are highly conserved with 88.40% identity, but those of the CIPK family are less conserved with 63.72% identity. And the identity of sorghum CBLinteracting NAF domains of CIPKs is 61.66%. What's more, regarding to the sorghum SnRK2 and CIPK kinases, they are characterized with distinct motifs and their subcellular localization is not necessarily the same, which suggests they may be divergent in functions. Due to less conserved sequences, complex subcellular localization, and more family members, sorghum CIPK genes may play more flexible and multiple biological functions. According to the phylogenetic analysis of SnRK genes and SnRK functional studies in other plants, it is speculated that sorghum SnRK2 and CIPK genes may play important roles in stress response, growth and development.
基金supported by the State Major Basic Research Development Program (2011CB100600)the National Natural Science Foundation of China (31171974 and 30800755)
文摘The Dof (DNA binding with One Finger) family encoding single zinc finger proteins has been known as a family of plant-specific transcription factors. These transcription factors are involved in a variety of functions of importance for different biological processes in plants. In the current study, we identified 34 Dof family genes in tomato (Solanum lycopersicum L.), distributed on 11 chromosomes. A complete overview of SlDof genes in tomato is presented, including the gene structures, chromosome locations, phylogeny, protein motifs and evolution pattern. Phylogenetic analysis of 34 SlDof proteins resulted in four classes constituting six clusters. In addition, a comparative analysis between these genes in tomato, Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.) was also performed. The tomato Dof family expansion has been dated to recent duplication events, and segmental duplication is predominant for the SlDof genes. Furthermore, the SlDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth conditions. This is the first step towards genome-wide analyses of the Dof genes in tomato. Our study provides a very useful reference for cloning and functional analysis of the members of this gene family in tomato and other species.
基金supported by grants from the National Natural Science Foundation of China(31400949,81502102,31471059,81371498,and 31371121)NIH R01,USA Grants(DE17794,DE22743,and NS87988)
文摘Mounting evidence supports an important role of chemokines, produced by spinal cord astrocytes, in promoting central sensitization and chronic pain. In particular, CCL2 (C-C motif chemokine ligand 2) has been shown to enhance N-methyl-D-aspartate (NMDA)-induced currents in spinal outer lamina II (Iio) neurons. However, the exact molecular, synaptic, and cellular mechanisms by which CCL2 modulates central sensitization are still unclear. We found that spinal injection of the CCR2 antagonist RS504393 attenuated CCL2- and inflammation-induced hyperalgesia. Single-cell RT-PCR revealed CCR2 expres- sion in excitatory vesicular glutamate transporter subtype 2-positive (VGLUT2+) neurons. CCL2 increased NMDA- induced currents in CCR2+/VGLUT2+ neurons in lamina IIo; it also enhanced the synaptic NMDA currents evoked by dorsal root stimulation; and furthermore, it increased the total and synaptic NMDA currents in somatostatin- expressing excitatory neurons. Finally, intrathecal RS504393 reversed the long-term potentiation evoked in the spinal cord by C-fiber stimulation. Our findings suggest that CCL2 directly modulates synaptic plasticity in CCR2- expressing excitatory neurons in spinal lamina Iio, and this underlies the generation of central sensitization in patho- logical pain.
基金This work was supported by The National Science Foundation (IOB- 0543751 to J.C.J.).We thank the Arabidopsis Biological Resource Center (Columbus, Ohio) for providing DNA clones and seeds, Dr Biao Ding formicroscopy facility, Dr Steven St Martin for microarray design and data analysis, Cyrus Hah for protoplast transient expression analysis, Drs John Finer and Michelle Jones for critical reading of the manuscript, and Joe Takayama for greenhouse support. No conflict of interest declared.
文摘Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZlP transcription factors are known to be involved in nutrient and/or stress signaling. An Arabidopsis Sl-group bZlP gene, AtbZIP1, was identified as a sugar-sensitive gene in a previous gene expression profiling study (Plant Cell. 16, 2128-2150). In this report, we show that the expression of AtbZIP1 is repressed by sugars in a fast, sensitive, and reversible way. The sugar repression of Atb- ZIP1 is affected by a conserved sugar signaling component, hexokinase. Besides being a sugar-regulated gene, AtbZIP1 can mediate sugar signaling and affect gene expression, plant growth, and development. When carbon nutrients are limited, gain or loss of function of AtbZlP1 causes changes in the rates of early seedling establishment. Results of phenotypic analyses indicate that AtbZlP1 acts as a negative regulator of early seedling growth. Using gain- and loss-of-function plants in a microarray analysis, two sets of putative AtbZIP1-regulated genes have been identified. Among them, sugar-responsive genes are highly over-represented, implicating a role of AtbZlP1 in sugar-mediated gene expression. Using yeast two-hybrid (Y-2-H) screens and bimolecular fluorescence complementation (BiFC) analyses, we are able to recapitulate extensive C/S1 AtbZlP protein interacting network in living cells. Finally, we show that AtbZIP1 can bind ACGT-based motifs in vitro and that the binding characteristics appear to be affected by the heterodimerization between AtbZlP1 and the C-group AtbZIPs, including AtbZlP10 and AtbZlP63.
文摘During the floral transition the shoot apical meristem changes its identity from a vegetative to an inflorescence state. This change in identity can be promoted by external signals, such as inductive photoperiod conditions or vernalization, and is accompanied by changes in expression of key developmental genes. The change in meristem identity is usually not reversible, even if the inductive signal occurs only transiently. This implies that at least some of the key genes must possess an intrinsic memory of the newly acquired expression state that ensures irreversibility of the process. In this review, we discuss different molecular scenarios that may underlie a molecular memory of gene expression.