There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements.Rapid advances in developing and implementing such sensors in the last se...There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements.Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms.Applications include wearable consumer electronics,soft robotics,medical prosthetics,electronic skin,and health monitoring.In this review,we provide a state-ofthe-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications.We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials.We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors.We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications,in particular for artificial electronic skins,physiological health monitoring and assessment,and therapeutic and drug delivery.Finally,we conclude this review by offering some insight into the challenges and opportunities facing this field.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
文摘There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements.Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms.Applications include wearable consumer electronics,soft robotics,medical prosthetics,electronic skin,and health monitoring.In this review,we provide a state-ofthe-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications.We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials.We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors.We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications,in particular for artificial electronic skins,physiological health monitoring and assessment,and therapeutic and drug delivery.Finally,we conclude this review by offering some insight into the challenges and opportunities facing this field.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.