期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于类对比簇分配异构迁移学习的空间滚动轴承寿命阶段识别
1
作者
刘峰良
李锋
+2 位作者
汤宝平
汪永超
田大庆
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024年第1期256-266,共11页
针对变工况条件下因样本数据分布差异大、可训练用样本较少以及不同寿命阶段样本数量不均等造成的空间滚动轴承寿命阶段识别准确率较低的问题,提出一种无监督迁移学习方法--类对比簇分配异构迁移学习(CAHTL)。在CAHTL中,通过异构迁移学...
针对变工况条件下因样本数据分布差异大、可训练用样本较少以及不同寿命阶段样本数量不均等造成的空间滚动轴承寿命阶段识别准确率较低的问题,提出一种无监督迁移学习方法--类对比簇分配异构迁移学习(CAHTL)。在CAHTL中,通过异构迁移学习将历史工况下少量有类标签样本和当前工况的无类标签样本(即待测样本)迁移到公共特征空间内,使得不同工况样本之间的分布差异最小化;利用源域聚类簇点构建目标域样本特征的正负样本实现两域样本的数量再分配,再对两域正负样本进行对比学习以使待测样本分类性更好;通过计算待测样本与聚类簇点的相似度完成待测样本分类,且该分类过程无需参数学习,因此可避免样本不均等情况下对于不同寿命阶段样本识别准确率差距过大和在少有类标签训练样本情况下网络出现过拟合的问题;利用随机梯度下降和动量更新对CAHTL参数进行不同步更新,以保持样本特征的一致性并提高CAHTL的收敛速度。CAHTL可利用空间滚动轴承历史工况下的少量、非均等的已知寿命阶段的训练样本对当前工况的待测样本进行较高精度的寿命阶段识别。空间滚动轴承寿命阶段识别实例验证了该方法的有效性。
展开更多
关键词
迁移学习
对比学习
动量更新
空间滚动轴承
寿命阶段识别
下载PDF
职称材料
题名
基于类对比簇分配异构迁移学习的空间滚动轴承寿命阶段识别
1
作者
刘峰良
李锋
汤宝平
汪永超
田大庆
机构
四川大学机械工程学院
重庆大学机械传动国家重点实验室
出处
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024年第1期256-266,共11页
基金
中央高校基本科研业务费(2022CDZG–12)
机械传动国家重点实验室开放基金资助项目(SKLMT–KFKT–201718)
四川省重点研发项目(2020KJT0117–2020YFQ0039)。
文摘
针对变工况条件下因样本数据分布差异大、可训练用样本较少以及不同寿命阶段样本数量不均等造成的空间滚动轴承寿命阶段识别准确率较低的问题,提出一种无监督迁移学习方法--类对比簇分配异构迁移学习(CAHTL)。在CAHTL中,通过异构迁移学习将历史工况下少量有类标签样本和当前工况的无类标签样本(即待测样本)迁移到公共特征空间内,使得不同工况样本之间的分布差异最小化;利用源域聚类簇点构建目标域样本特征的正负样本实现两域样本的数量再分配,再对两域正负样本进行对比学习以使待测样本分类性更好;通过计算待测样本与聚类簇点的相似度完成待测样本分类,且该分类过程无需参数学习,因此可避免样本不均等情况下对于不同寿命阶段样本识别准确率差距过大和在少有类标签训练样本情况下网络出现过拟合的问题;利用随机梯度下降和动量更新对CAHTL参数进行不同步更新,以保持样本特征的一致性并提高CAHTL的收敛速度。CAHTL可利用空间滚动轴承历史工况下的少量、非均等的已知寿命阶段的训练样本对当前工况的待测样本进行较高精度的寿命阶段识别。空间滚动轴承寿命阶段识别实例验证了该方法的有效性。
关键词
迁移学习
对比学习
动量更新
空间滚动轴承
寿命阶段识别
Keywords
transfer
learning
contrastive
learning
momentum
renewal
space
rolling
bearings
life
stage
identification
分类号
TH113 [机械工程—机械设计及理论]
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于类对比簇分配异构迁移学习的空间滚动轴承寿命阶段识别
刘峰良
李锋
汤宝平
汪永超
田大庆
《工程科学与技术》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部