电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力...电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力系统储能领域具有广阔的应用前景。主要介绍了LMB的工作原理,重点综述了其发展历程和重要研究进展,并指出了现有电池体系存在的局限性与面临的挑战,在此基础上,探讨并明确了LMB的重点发展方向。展开更多
The alumina solubility in the title system within the composition range of KR{m(K3AlF6)/[m(K3AlF6)+ m(Na3AlF6)]} 10%―50%, a ternary Na3AlF6-K3AlF6-AlF3 molten system with 23%―29%(mass fraction) AlF3 was inv...The alumina solubility in the title system within the composition range of KR{m(K3AlF6)/[m(K3AlF6)+ m(Na3AlF6)]} 10%―50%, a ternary Na3AlF6-K3AlF6-AlF3 molten system with 23%―29%(mass fraction) AlF3 was investigated by measuring the mass loss of a rotating sintered corundum disc. And the following empirical equation was derived when superheat degree was no more than 60 °C: w(Al2O3)sat=A×(T/1000)B, where A= –1.85774+ 26.754234w(AlF3)–0.3683–0.00783KR2.363+0.010266KR2.3048+0.7902w(AlF3)0.00652, B=112.4625–53.2567w(AlF3)0.4236+ 5.1079w(AlF3)0.9241+0.01542w(AlF3)1.3540. Considering both higher alumina solubility and not too high superheat de gree are required, alumina solubility of different compositions at not the same temperature but the same superheat degree was studied, which will be more industrial helpful for selecting prospective compositions. The results show that the composition deserved to be further tested in lower temperature cells is 10%―30% KR and 23%―26%(mass fraction) AlF3.展开更多
NiCl_(2) with high theoretical voltage and thermal decomposition temperature attracts much attention as cathode material for thermal batteries with the requirement of high power density, high energy density and long w...NiCl_(2) with high theoretical voltage and thermal decomposition temperature attracts much attention as cathode material for thermal batteries with the requirement of high power density, high energy density and long work time. Unfortunately, the practical utilization of thermal batteries with NiCl_(2) cathode is limited by their poor electrochemical performance under large current, even with the conventional Li F-Li Cl-Li Br all-lithium molten salt electrolyte which proposes ultrahigh lithium ion conductivity. In this work, an unexpected ionic exchange reaction between NiCl_(2) and Li Br in Li F-Li Cl-Li Br was found, which would be the main reason for the poor electrochemical behavior of thermal batteries with NiCl_(2) cathode and Li F-Li Cl-Li Br molten salt. On this basis, Li F-Li Cl-Li_(2)SO_(4), another all-lithium molten salt free of Li Br, was investigated as the new electrolyte for NiCl_(2) cathode. For the single cell of Li(Si)/Li F-Li Cl-Li_(2)SO_(4)/NiCl_(2), a discharge capacity of 377 mA h g^(-1)(with a cut-off voltage of 1.2 V) was achieved with large current density(500 mA cm^(-2)) applied at 520℃, which is almost twice of that of Li(Si)/Li F-Li Cl-Li Br/NiCl_(2)(190 mA h g^(-1)) at the same conditions.展开更多
文摘电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力系统储能领域具有广阔的应用前景。主要介绍了LMB的工作原理,重点综述了其发展历程和重要研究进展,并指出了现有电池体系存在的局限性与面临的挑战,在此基础上,探讨并明确了LMB的重点发展方向。
基金Supported by the National Basic Research Program of China(No.2005CB623703)the National High-Tech Research and Development Program of China(No.2008AA030503)
文摘The alumina solubility in the title system within the composition range of KR{m(K3AlF6)/[m(K3AlF6)+ m(Na3AlF6)]} 10%―50%, a ternary Na3AlF6-K3AlF6-AlF3 molten system with 23%―29%(mass fraction) AlF3 was investigated by measuring the mass loss of a rotating sintered corundum disc. And the following empirical equation was derived when superheat degree was no more than 60 °C: w(Al2O3)sat=A×(T/1000)B, where A= –1.85774+ 26.754234w(AlF3)–0.3683–0.00783KR2.363+0.010266KR2.3048+0.7902w(AlF3)0.00652, B=112.4625–53.2567w(AlF3)0.4236+ 5.1079w(AlF3)0.9241+0.01542w(AlF3)1.3540. Considering both higher alumina solubility and not too high superheat de gree are required, alumina solubility of different compositions at not the same temperature but the same superheat degree was studied, which will be more industrial helpful for selecting prospective compositions. The results show that the composition deserved to be further tested in lower temperature cells is 10%―30% KR and 23%―26%(mass fraction) AlF3.
基金supported by the National Nature Science Associate Foundation (NSAF) of China (Grant No. U1930208)the Laboratory of Precision Manufacturing Technology+2 种基金China Academy of Engineering Physics (Grant No. ZD17006,ZM18002)the National Natural Science Foundation of China (Grant Nos. 11804312 and 21703215)the Science and Technology Innovation Foundation of Institute of Electronic Engineering (Grant No. S201904)。
文摘NiCl_(2) with high theoretical voltage and thermal decomposition temperature attracts much attention as cathode material for thermal batteries with the requirement of high power density, high energy density and long work time. Unfortunately, the practical utilization of thermal batteries with NiCl_(2) cathode is limited by their poor electrochemical performance under large current, even with the conventional Li F-Li Cl-Li Br all-lithium molten salt electrolyte which proposes ultrahigh lithium ion conductivity. In this work, an unexpected ionic exchange reaction between NiCl_(2) and Li Br in Li F-Li Cl-Li Br was found, which would be the main reason for the poor electrochemical behavior of thermal batteries with NiCl_(2) cathode and Li F-Li Cl-Li Br molten salt. On this basis, Li F-Li Cl-Li_(2)SO_(4), another all-lithium molten salt free of Li Br, was investigated as the new electrolyte for NiCl_(2) cathode. For the single cell of Li(Si)/Li F-Li Cl-Li_(2)SO_(4)/NiCl_(2), a discharge capacity of 377 mA h g^(-1)(with a cut-off voltage of 1.2 V) was achieved with large current density(500 mA cm^(-2)) applied at 520℃, which is almost twice of that of Li(Si)/Li F-Li Cl-Li Br/NiCl_(2)(190 mA h g^(-1)) at the same conditions.