An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic co...An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.展开更多
A novel method is proposed to enhance the gasification and removal of copper from molten steel by adding ammonium salts or urea into molten steel under normal pressure.The decopperization experiments were conducted in...A novel method is proposed to enhance the gasification and removal of copper from molten steel by adding ammonium salts or urea into molten steel under normal pressure.The decopperization experiments were conducted in a molybdenum-wire resistance furnace at 1 873 K.The copper content of about 400 g of a mild steel was reduced from 0.49%(mass fraction,the same below) and 0.51% to 0.31% and 0.38% using 0.7 g of NHC1 and 0.5 g of(NH)COrespectively,while the copper content of the molten steel was reduced from 0.61%to 0.56% using 2.00 g of NHCONH.展开更多
The copper contents and its existing forms in the slags during the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant tr...The copper contents and its existing forms in the slags during the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant trials with the corresponding thermodynamic calculations and kinetic considerations. From the plant data, the total copper content in the slags was in the range of 2% to 8% (mass fraction). The mechanical entrainment of matte drops has been found to be the main cause of the copper loss. The suspension index, defined as the ratio of the mass fraction of copper in suspended matte drops in the slag to that in bulk of the matte phase, has been adopted to quantify the matte entrainment. The values of this parameter estimated in this work have been found mainly within a range of 2.5%-8.0%. The Fe3O4 content in the slag has been estimated to be the most important factor, among others, influencing the separation of slag with matte and, consequently, the copper loss from the slag.展开更多
Solid liquid extraction of copper ion (I) with 2, 9-dimethyl-1, 10-phenanthroline (neo-cuproine, DMP) into molten naphthalene followed by chloroform spectrophotometric determination has been studied experimentally. Th...Solid liquid extraction of copper ion (I) with 2, 9-dimethyl-1, 10-phenanthroline (neo-cuproine, DMP) into molten naphthalene followed by chloroform spectrophotometric determination has been studied experimentally. The ternary complex Cu(I)-DMP-ClO4 was extracted quantitatively into molten naphthalene in the range of pH from 5 to 6 at 85 C-. Absorbance was spectrophotometrically determined at 459 nm against the reagent blank after the solid naphthalene layer was anhydrously dissolved in chloroform. Beer's law is obeyed over a concentration range of 0.5-70 mug/mL. The molar absorptivity and Sandell's sensitivity are 1.0x10(4) L/(mol(.)cm) and 0.0099 mug(.)cm(2) respectively. In addition, the various conditions on determination and the interference of coexisted ions were discussed, and the method was applied to the determination of copper ion both in tea samples and cadmium sulfate reagents. The results are in good agreement with those obtained by ICP AES method.展开更多
A novel method has been proposed to remove copper from molten steel by adding the compounds of hydrogen and nitrogen into the melt at normal pressure. Feasibility experiments were carried out in Mo-wire resistance fur...A novel method has been proposed to remove copper from molten steel by adding the compounds of hydrogen and nitrogen into the melt at normal pressure. Feasibility experiments were carried out in Mo-wire resistance furnace at 1600℃. The copper content of about 400 g 45 steel were reduced from 0.60% and 0.57% to 0.41% and 0.51% with 3.25g and 1.20 g NH_4Cl respectively, while the copper contents of about 300 g steel melt were reduced from 1.15% and 0.61% to 0.90% and 0.56% with 4.10 g and 2.00 g NH_2CONH_2. These results indicate that the proposed method is very promising to be put into practical and worthwhile of further study.展开更多
Fe_(3)Si and FeSi intermetallic compounds were prepared by CaCl_(2)-NaCl melt electrolysis at 800℃from the non-magnetic copper slag compound.The phase transition of the cathode particles with different electrolysis v...Fe_(3)Si and FeSi intermetallic compounds were prepared by CaCl_(2)-NaCl melt electrolysis at 800℃from the non-magnetic copper slag compound.The phase transition of the cathode particles with different electrolysis voltages and durations was investigated by X-ray fluorescence spectroscopy,inductively coupled plasma spectroscopy,X-ray diffraction,and scanning electron microscopy.The results showed that Fe_(3)Si and FeSi intermetallic compounds can be obtained by one-step electrolysis for 10 h at 3.2 V and two-step electrolysis of 2.5 V for 4 h and 3.2 V for 6 h.However,the current efficiency increased from 31.70%of one-step electrolysis to 39.87%of two-step electrolysis.The formation of Fe_(3)Si and FeSi intermetallic compounds is a gradual evolution process with the increase in Si content,following the formation law of Fe→FeSi→Fe_(3)Si+FeSi→FeSi.The metallic impurities of the final product were 1.29 wt.%Mg and 3.85 wt.%Al,respectively.展开更多
In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current de...In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.展开更多
文摘An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.
基金supported by the National Foundation of Natural Science of China
文摘A novel method is proposed to enhance the gasification and removal of copper from molten steel by adding ammonium salts or urea into molten steel under normal pressure.The decopperization experiments were conducted in a molybdenum-wire resistance furnace at 1 873 K.The copper content of about 400 g of a mild steel was reduced from 0.49%(mass fraction,the same below) and 0.51% to 0.31% and 0.38% using 0.7 g of NHC1 and 0.5 g of(NH)COrespectively,while the copper content of the molten steel was reduced from 0.61%to 0.56% using 2.00 g of NHCONH.
基金the National Science Foundation of China under the contract No. 59874005.]
文摘The copper contents and its existing forms in the slags during the slag-making stage of Peirce-Smith converters in Guixi Smelter, Jiangxi Province, China have been investigated. The investigation was based on plant trials with the corresponding thermodynamic calculations and kinetic considerations. From the plant data, the total copper content in the slags was in the range of 2% to 8% (mass fraction). The mechanical entrainment of matte drops has been found to be the main cause of the copper loss. The suspension index, defined as the ratio of the mass fraction of copper in suspended matte drops in the slag to that in bulk of the matte phase, has been adopted to quantify the matte entrainment. The values of this parameter estimated in this work have been found mainly within a range of 2.5%-8.0%. The Fe3O4 content in the slag has been estimated to be the most important factor, among others, influencing the separation of slag with matte and, consequently, the copper loss from the slag.
基金This research was financially supported by the project KJCXGC-01 of Northwest Normal University, China.
文摘Solid liquid extraction of copper ion (I) with 2, 9-dimethyl-1, 10-phenanthroline (neo-cuproine, DMP) into molten naphthalene followed by chloroform spectrophotometric determination has been studied experimentally. The ternary complex Cu(I)-DMP-ClO4 was extracted quantitatively into molten naphthalene in the range of pH from 5 to 6 at 85 C-. Absorbance was spectrophotometrically determined at 459 nm against the reagent blank after the solid naphthalene layer was anhydrously dissolved in chloroform. Beer's law is obeyed over a concentration range of 0.5-70 mug/mL. The molar absorptivity and Sandell's sensitivity are 1.0x10(4) L/(mol(.)cm) and 0.0099 mug(.)cm(2) respectively. In addition, the various conditions on determination and the interference of coexisted ions were discussed, and the method was applied to the determination of copper ion both in tea samples and cadmium sulfate reagents. The results are in good agreement with those obtained by ICP AES method.
文摘A novel method has been proposed to remove copper from molten steel by adding the compounds of hydrogen and nitrogen into the melt at normal pressure. Feasibility experiments were carried out in Mo-wire resistance furnace at 1600℃. The copper content of about 400 g 45 steel were reduced from 0.60% and 0.57% to 0.41% and 0.51% with 3.25g and 1.20 g NH_4Cl respectively, while the copper contents of about 300 g steel melt were reduced from 1.15% and 0.61% to 0.90% and 0.56% with 4.10 g and 2.00 g NH_2CONH_2. These results indicate that the proposed method is very promising to be put into practical and worthwhile of further study.
基金This work was supported by the National Natural Science Foundation of China(No.52174315).
文摘Fe_(3)Si and FeSi intermetallic compounds were prepared by CaCl_(2)-NaCl melt electrolysis at 800℃from the non-magnetic copper slag compound.The phase transition of the cathode particles with different electrolysis voltages and durations was investigated by X-ray fluorescence spectroscopy,inductively coupled plasma spectroscopy,X-ray diffraction,and scanning electron microscopy.The results showed that Fe_(3)Si and FeSi intermetallic compounds can be obtained by one-step electrolysis for 10 h at 3.2 V and two-step electrolysis of 2.5 V for 4 h and 3.2 V for 6 h.However,the current efficiency increased from 31.70%of one-step electrolysis to 39.87%of two-step electrolysis.The formation of Fe_(3)Si and FeSi intermetallic compounds is a gradual evolution process with the increase in Si content,following the formation law of Fe→FeSi→Fe_(3)Si+FeSi→FeSi.The metallic impurities of the final product were 1.29 wt.%Mg and 3.85 wt.%Al,respectively.
文摘In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.