为了更好的保护开发利用晋南牛,确保晋南牛的遗传多样性,本研究应用基因芯片技术,对晋南牛进行群体遗传特性的检测及后备种公牛的遗传评估,为晋南牛的分子辅助选育与保种提供理论与技术支持。采集18月龄健康、体重相近((350±20)kg...为了更好的保护开发利用晋南牛,确保晋南牛的遗传多样性,本研究应用基因芯片技术,对晋南牛进行群体遗传特性的检测及后备种公牛的遗传评估,为晋南牛的分子辅助选育与保种提供理论与技术支持。采集18月龄健康、体重相近((350±20)kg)的荷斯坦牛、和顺肉牛、西门塔尔牛、延边牛及利木赞牛血样各10份,及晋南牛后备公牛血样25份,根据不同牛品种分为6组,其中前5组每组10个重复,晋南牛后备公牛25个重复。应用Illumina SNP 50K高密度牛SNP芯片进行基因型检测,分析比较晋南牛的群体遗传特征,运用亲缘矩阵计算晋南牛后备公牛的亲缘系数,同时用BLUP进行遗传评估。结果表明,晋南牛在遗传结构上与荷斯坦牛、和顺肉牛、西门塔尔牛及利木赞牛关系较远,与延边牛较近,为中国地方品种群体;对晋南牛后备公牛进行遗传评估,得出了牛的基因组胴体重方差育种值排名,JN23的胴体重倍数性状标准差最大,从基因组水平可选作肉用种公牛;应用亲缘分析对晋南牛后备公牛家系进行分类,避免群体间的近交。本研究对晋南牛后备公牛进行了遗传评估、近交家系分析、传统表型选择及遗传疾病检测,最终选留的种公牛为JN07、JN23、JN05、JN08、JN02、JN13、JN19、JN14,通过多种选育方法结合提高了公牛的选择准确性,为晋南牛的群体选育提高奠定了基础。展开更多
Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respe...Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respectively. Minghui63 (MH63) has been a widely used restorationline in hybrid rice production in China during the past two decades. The F1 of cross 'MH63O.rufipogon' was backcrossed with MH63 generation by generation. RM9 and RM166 were used toselect the plants from the progeny of the backcross populations. The results were as follows:(1) In BC2F1 population, the percentage of the individuals which have RM9 and RM166 amplifiedbands simultaneously was 12.2%, while in the BC3F1 population, that was 16.3%. (2) Among 400individuals of BC3F1, four yield-promising plants were obtained, with yield being 30% more thanthat of MH63. (3) The products amplified by primer RM166 in O. rufipogon and MH63 weresequenced. It was found that the DNA fragment sequence amplified by RM166 from MH63 was 101 bpshorter than that from O. rufipogon. The 101bp sequence is a part of an intron of the PCNA(proliferating cell nuclear antigen) gene.展开更多
文摘为了更好的保护开发利用晋南牛,确保晋南牛的遗传多样性,本研究应用基因芯片技术,对晋南牛进行群体遗传特性的检测及后备种公牛的遗传评估,为晋南牛的分子辅助选育与保种提供理论与技术支持。采集18月龄健康、体重相近((350±20)kg)的荷斯坦牛、和顺肉牛、西门塔尔牛、延边牛及利木赞牛血样各10份,及晋南牛后备公牛血样25份,根据不同牛品种分为6组,其中前5组每组10个重复,晋南牛后备公牛25个重复。应用Illumina SNP 50K高密度牛SNP芯片进行基因型检测,分析比较晋南牛的群体遗传特征,运用亲缘矩阵计算晋南牛后备公牛的亲缘系数,同时用BLUP进行遗传评估。结果表明,晋南牛在遗传结构上与荷斯坦牛、和顺肉牛、西门塔尔牛及利木赞牛关系较远,与延边牛较近,为中国地方品种群体;对晋南牛后备公牛进行遗传评估,得出了牛的基因组胴体重方差育种值排名,JN23的胴体重倍数性状标准差最大,从基因组水平可选作肉用种公牛;应用亲缘分析对晋南牛后备公牛家系进行分类,避免群体间的近交。本研究对晋南牛后备公牛进行了遗传评估、近交家系分析、传统表型选择及遗传疾病检测,最终选留的种公牛为JN07、JN23、JN05、JN08、JN02、JN13、JN19、JN14,通过多种选育方法结合提高了公牛的选择准确性,为晋南牛的群体选育提高奠定了基础。
文摘Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respectively. Minghui63 (MH63) has been a widely used restorationline in hybrid rice production in China during the past two decades. The F1 of cross 'MH63O.rufipogon' was backcrossed with MH63 generation by generation. RM9 and RM166 were used toselect the plants from the progeny of the backcross populations. The results were as follows:(1) In BC2F1 population, the percentage of the individuals which have RM9 and RM166 amplifiedbands simultaneously was 12.2%, while in the BC3F1 population, that was 16.3%. (2) Among 400individuals of BC3F1, four yield-promising plants were obtained, with yield being 30% more thanthat of MH63. (3) The products amplified by primer RM166 in O. rufipogon and MH63 weresequenced. It was found that the DNA fragment sequence amplified by RM166 from MH63 was 101 bpshorter than that from O. rufipogon. The 101bp sequence is a part of an intron of the PCNA(proliferating cell nuclear antigen) gene.