Fungi blast is one of the most serious diseases of rice worldwide. Breeding resistant varieties have been proved to be the most effective and economical means to control the disease. This paper describes the molecular...Fungi blast is one of the most serious diseases of rice worldwide. Breeding resistant varieties have been proved to be the most effective and economical means to control the disease. This paper describes the molecular marker-assisted selection (MAS) procedure for a broad-spectrum blast resistant gene Pi1 integrated into an elite hybrid maintainer line, Zhenshan 97. A simple sequence repeat (SSR) based on molecular marker-aided selection system for Pi1 segment was established. Using a backcross population and a blast isolate F1829, Pi1 gene was mapped on the top of chromosome 11 between markers RZ536 and RM144, with a distance of 9.7 cM and 6.8 cM, respectively. Seventeen families derived from the recurrent parent Zhenshan 97 were obtained with homozygous Pi1 gene. The background of the 17 families was identified with inter simple sequence repeat (ISSR) amplification, the highest recovery of the Zhenshan 97 genetic background was 97.01% after the assay of 167 polymorphic bands.展开更多
文摘Fungi blast is one of the most serious diseases of rice worldwide. Breeding resistant varieties have been proved to be the most effective and economical means to control the disease. This paper describes the molecular marker-assisted selection (MAS) procedure for a broad-spectrum blast resistant gene Pi1 integrated into an elite hybrid maintainer line, Zhenshan 97. A simple sequence repeat (SSR) based on molecular marker-aided selection system for Pi1 segment was established. Using a backcross population and a blast isolate F1829, Pi1 gene was mapped on the top of chromosome 11 between markers RZ536 and RM144, with a distance of 9.7 cM and 6.8 cM, respectively. Seventeen families derived from the recurrent parent Zhenshan 97 were obtained with homozygous Pi1 gene. The background of the 17 families was identified with inter simple sequence repeat (ISSR) amplification, the highest recovery of the Zhenshan 97 genetic background was 97.01% after the assay of 167 polymorphic bands.