In the sample compartment of a conventional spectrophotometer, mounting of a polarizer before sample and an analyzer behind sample allows the determination of the optical rotatory dispersion of optical active media by...In the sample compartment of a conventional spectrophotometer, mounting of a polarizer before sample and an analyzer behind sample allows the determination of the optical rotatory dispersion of optical active media by measurement of the transmission ratio of crossed and parallel arranged polarizer and analyzer. A formula for the determination of the angle of rotation is derived from the transmission ratio. The arrangement is applied to determine the molar optical rotation of D-glucose in water in the wavelength range from 220 nm to 820 nm.展开更多
In order to further verify the accuracy and feasibility of the calculated mass action concentrations Ni of Al and Fe by the developed atom and molecule coexistence theory(AMCT)model,i.e.,AMCT-N,model,for representing ...In order to further verify the accuracy and feasibility of the calculated mass action concentrations Ni of Al and Fe by the developed atom and molecule coexistence theory(AMCT)model,i.e.,AMCT-N,model,for representing activities aR,i of Al and Fe in Fe-Al binary melts reported in the first part of the serial studies,the molar mixing thermodynamic functions of Fe-Al binary melts over a temperature range from 1823 to 1973 K have been calculated based on Ni of Al and Fe as well as the effect of temperature on activity coefficients 7,of Al and Fe as■lnγj/■T=■ln(Ni/xi)/dT by the developed AMCTN-Ni model,where T is absolute temperature and.v,is the mole fraction of element i or compound i in metallic melts.The reported molar mixing thermodynamic functions of Fe-Al binary melts as well as the reported excess molar mixing thermodynamic functions of Fe-Al binary melts relative to ideal solution as a basis from the available literatures have been critically assessed and applied as criteria to verify the developed AMCT-Al,model.The effect of changing temperature onγi of Al and Fe,i.e.,activity coefficient gradients■lnγAl/■T and■lnγFe/■T,which are two indispensable parameters to calculate the molar mixing thermodynamic functions of Fe-Al binary melts,can be accurately obtained by the developed AMCT-Ni,model and expressed by the cubic polynomial functions.Not only the partial molar mixing thermodynamic functions of Al and Fe in Fe-Al binary melts but also the integral molar mixing thermodynamic functions of Fe-Al binary melts can be accurately calculated by the developed AMCT-Al,model.Furthermore,the excess partial and integral molar mixing thermodynamic functions of Fe-Al binary melts relative to ideal solution as a basis can also be precisely calculated by the developed AMCT-Ni,model.展开更多
Raoultian activity coefficients γ0c of C in infinitely dilute Fe-C binary melts at temperatures of 1833, 1873, 1923, and 1973 K have been determined from the converted mass action concentrations Nc of C in Fe-C binar...Raoultian activity coefficients γ0c of C in infinitely dilute Fe-C binary melts at temperatures of 1833, 1873, 1923, and 1973 K have been determined from the converted mass action concentrations Nc of C in Fe-C binary melts by the developed AMCT-Ni model based on the atom-molecule coexistence theory (AMCT). The obtained expression of γ0c by the developed AMCT-Ni model has been evaluated to be accurate based on the reported ones from the literature. Meanwhile, three activity coefficients γc,f%,c, andfH,c of C coupled with activity aR,C or a%,c or aH,c have been obtained by the developed AMCT-Ni model and assessed through comparing with the predicted ones by other models from the literature. The first-order activity interaction coefficients ec, ec, and hcc related to γc f%,c, and fH,c are also determined and assessed in comparison with the reported ones from the literature. Furthermore, the integral molar mixing thermodynamic functions such as AmixHm,Fe-C, △mix-Sm,Fe-C, and △mixGm,Fe-C of Fe-C binary melts over a temperature range from 1833 to 1973 K have been determined and evaluated to be valid based on the determined ones from the literature.展开更多
文摘In the sample compartment of a conventional spectrophotometer, mounting of a polarizer before sample and an analyzer behind sample allows the determination of the optical rotatory dispersion of optical active media by measurement of the transmission ratio of crossed and parallel arranged polarizer and analyzer. A formula for the determination of the angle of rotation is derived from the transmission ratio. The arrangement is applied to determine the molar optical rotation of D-glucose in water in the wavelength range from 220 nm to 820 nm.
基金This work is supported by the Beijing Natural Science Foundation(Grant No.2182069)the National Natural Science Foundation of China(Grant No.51174186).
文摘In order to further verify the accuracy and feasibility of the calculated mass action concentrations Ni of Al and Fe by the developed atom and molecule coexistence theory(AMCT)model,i.e.,AMCT-N,model,for representing activities aR,i of Al and Fe in Fe-Al binary melts reported in the first part of the serial studies,the molar mixing thermodynamic functions of Fe-Al binary melts over a temperature range from 1823 to 1973 K have been calculated based on Ni of Al and Fe as well as the effect of temperature on activity coefficients 7,of Al and Fe as■lnγj/■T=■ln(Ni/xi)/dT by the developed AMCTN-Ni model,where T is absolute temperature and.v,is the mole fraction of element i or compound i in metallic melts.The reported molar mixing thermodynamic functions of Fe-Al binary melts as well as the reported excess molar mixing thermodynamic functions of Fe-Al binary melts relative to ideal solution as a basis from the available literatures have been critically assessed and applied as criteria to verify the developed AMCT-Al,model.The effect of changing temperature onγi of Al and Fe,i.e.,activity coefficient gradients■lnγAl/■T and■lnγFe/■T,which are two indispensable parameters to calculate the molar mixing thermodynamic functions of Fe-Al binary melts,can be accurately obtained by the developed AMCT-Ni,model and expressed by the cubic polynomial functions.Not only the partial molar mixing thermodynamic functions of Al and Fe in Fe-Al binary melts but also the integral molar mixing thermodynamic functions of Fe-Al binary melts can be accurately calculated by the developed AMCT-Al,model.Furthermore,the excess partial and integral molar mixing thermodynamic functions of Fe-Al binary melts relative to ideal solution as a basis can also be precisely calculated by the developed AMCT-Ni,model.
文摘Raoultian activity coefficients γ0c of C in infinitely dilute Fe-C binary melts at temperatures of 1833, 1873, 1923, and 1973 K have been determined from the converted mass action concentrations Nc of C in Fe-C binary melts by the developed AMCT-Ni model based on the atom-molecule coexistence theory (AMCT). The obtained expression of γ0c by the developed AMCT-Ni model has been evaluated to be accurate based on the reported ones from the literature. Meanwhile, three activity coefficients γc,f%,c, andfH,c of C coupled with activity aR,C or a%,c or aH,c have been obtained by the developed AMCT-Ni model and assessed through comparing with the predicted ones by other models from the literature. The first-order activity interaction coefficients ec, ec, and hcc related to γc f%,c, and fH,c are also determined and assessed in comparison with the reported ones from the literature. Furthermore, the integral molar mixing thermodynamic functions such as AmixHm,Fe-C, △mix-Sm,Fe-C, and △mixGm,Fe-C of Fe-C binary melts over a temperature range from 1833 to 1973 K have been determined and evaluated to be valid based on the determined ones from the literature.