In order to analyze the effects of the temperature gradient on moisture movement during the highly intensive microwave-vacuum drying, thermal diffusion of Masson pine wood was studied. Internal distribution of tempera...In order to analyze the effects of the temperature gradient on moisture movement during the highly intensive microwave-vacuum drying, thermal diffusion of Masson pine wood was studied. Internal distribution of temperature and moisture in Masson pine samples sealed by epoxy resin and aluminum foil was measured, the magnitude of thermal diffusion was calculated and the influencing factors of thermal diffusion were discussed. Results showed that with the transfer of moisture toward the low temperature in wood, opposite temperature and moisture gradient occurred. The initial moisture content (MC), temperature and time are important factors affecting this process; the thermal diffusion is in proportion to wood temperature, its initial moisture and time. The temperature and distance from hot surface is strongly linearly correlated, and the relationship between MCs at different locations and distance from the hot end surface changes from logarithmically form to exponentially form with the increase in experimental time.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 59876005)
文摘In order to analyze the effects of the temperature gradient on moisture movement during the highly intensive microwave-vacuum drying, thermal diffusion of Masson pine wood was studied. Internal distribution of temperature and moisture in Masson pine samples sealed by epoxy resin and aluminum foil was measured, the magnitude of thermal diffusion was calculated and the influencing factors of thermal diffusion were discussed. Results showed that with the transfer of moisture toward the low temperature in wood, opposite temperature and moisture gradient occurred. The initial moisture content (MC), temperature and time are important factors affecting this process; the thermal diffusion is in proportion to wood temperature, its initial moisture and time. The temperature and distance from hot surface is strongly linearly correlated, and the relationship between MCs at different locations and distance from the hot end surface changes from logarithmically form to exponentially form with the increase in experimental time.