Noise reduction is one of the most exciting problems in electronic speckle pattern interferometry. We present a homomorphic partial differential equation filtering method for interferometry fringe patterns. The diffus...Noise reduction is one of the most exciting problems in electronic speckle pattern interferometry. We present a homomorphic partial differential equation filtering method for interferometry fringe patterns. The diffusion speed of the equation is determined based on the fringe density. We test the new method on the computer-simulated fringe pattern and experimentally obtain the fringe pattern, and evaluate its filtering performance. The qualitative and quantitative analysis shows that this technique can filter off the additive and multiplicative noise of the fringe patterns effectively, and avoid blurring high-density fringe. It is more capable of improving the quality of fringe patterns than the classical filtering methods.展开更多
文摘Noise reduction is one of the most exciting problems in electronic speckle pattern interferometry. We present a homomorphic partial differential equation filtering method for interferometry fringe patterns. The diffusion speed of the equation is determined based on the fringe density. We test the new method on the computer-simulated fringe pattern and experimentally obtain the fringe pattern, and evaluate its filtering performance. The qualitative and quantitative analysis shows that this technique can filter off the additive and multiplicative noise of the fringe patterns effectively, and avoid blurring high-density fringe. It is more capable of improving the quality of fringe patterns than the classical filtering methods.