直流线路故障的快速、可靠识别是基于模块化多电平换流器(modular multilevel converter,MMC)的柔性多端直流输电(multi-terminal direct current,MTDC)系统发展的关键技术之一。通过分析柔性多端直流系统线路故障后电流的暂态特征,提...直流线路故障的快速、可靠识别是基于模块化多电平换流器(modular multilevel converter,MMC)的柔性多端直流输电(multi-terminal direct current,MTDC)系统发展的关键技术之一。通过分析柔性多端直流系统线路故障后电流的暂态特征,提出了一套基于单端电流模量分析的MMC-MTDC系统直流线路故障识别方案。该方案通过对电流一模故障分量动态偏差值极值极性与大小的检测实现了直流线路故障快速定位,并利用故障后电流零模故障分量的差异,从而实现了对故障极的快速判别。在PSCAD仿真平台上搭建了双极四端MMC型柔性直流电网的模型,通过仿真算例验证了该保护在不同故障位置和过渡电阻下均能快速、可靠地检测到直流线路故障并且准确识别故障极。展开更多
The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to obse...The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to observe the layer-to-layer carrier injection behavior graphically. In this work, the impedance responses were characterized in the N,N’-diphenyl-N,N’-di-m-tolyl- 4,4’-diaminobiphenyl (TPD)/C60 p-n heterostructured OPV cells against applied voltages. The dependence of impedance responses on the layer thickness revealed a constant internal electric field that disturbed the carrier transport within the OPV cells. We applied this technique to new donor materials, in which thiophene units were inserted to the center of TPD. By increasing the number of thiophene units in TPD the fill-factor (FF) improved from 33% to 59%, which increased the power conversion efficiency (PCE). Based on the DMP analysis, we assigned the improvement in device performance to the reduction of the internal electric field.展开更多
In-situ impedance spectroscopy (IS) observations of the photoconductivity of the carriers induced by photo-irradiation in organic hetero-junction structured photovoltaic devices are presented. In the IS measurements, ...In-situ impedance spectroscopy (IS) observations of the photoconductivity of the carriers induced by photo-irradiation in organic hetero-junction structured photovoltaic devices are presented. In the IS measurements, the externally applied voltage and the dependence of the light intensity applied to the device were investigated. Analysis of the frequency characteristics which was measured by changing the light intensity shows there is a proportional relationship between the changes in the conductivities of the two components. The mobilities of the CuPc and C60 layers were calculated from the conductivities and were in the orders of 10﹣4 and 10﹣3 cm2/Vs, respectively.展开更多
A polycrystalline ceramic, a new type of complex tungsten bronze type structure, having a general formula Li2Pb2Y2W2Ti4V4O30 has been prepared relatively at low temperature using a mixedoxide technique after optimizin...A polycrystalline ceramic, a new type of complex tungsten bronze type structure, having a general formula Li2Pb2Y2W2Ti4V4O30 has been prepared relatively at low temperature using a mixedoxide technique after optimizing the calcination conditions on the basis of thermal analysis. The material has been characterized by different experimental techniques. The formation of the material under the reported conditions has been confirmed by an X-ray diffraction technique. A preliminary structural analysis of the material showed the formation of single phase compound in an orthorhombic crystal structure at room temperature. Studies of dielectric properties (εr, tanδ ) of the above compound as a function of temperature at different frequencies exhibit a ferroelectric phase transition of diffuse type. The electrical properties of the material have been studied using ac impedance spectroscopy technique. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructure. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The bulk resistance, evaluated from complex impedance spectra, is found to decrease with rise in temperature, exhibiting a typical negative temperature co-efficient of resistance (NTCR) – type behavior similar to that of semiconductors. A small contribution of grain boundary effect was also observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The ac conductivity spectra exhibit a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law.展开更多
文摘直流线路故障的快速、可靠识别是基于模块化多电平换流器(modular multilevel converter,MMC)的柔性多端直流输电(multi-terminal direct current,MTDC)系统发展的关键技术之一。通过分析柔性多端直流系统线路故障后电流的暂态特征,提出了一套基于单端电流模量分析的MMC-MTDC系统直流线路故障识别方案。该方案通过对电流一模故障分量动态偏差值极值极性与大小的检测实现了直流线路故障快速定位,并利用故障后电流零模故障分量的差异,从而实现了对故障极的快速判别。在PSCAD仿真平台上搭建了双极四端MMC型柔性直流电网的模型,通过仿真算例验证了该保护在不同故障位置和过渡电阻下均能快速、可靠地检测到直流线路故障并且准确识别故障极。
文摘The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to observe the layer-to-layer carrier injection behavior graphically. In this work, the impedance responses were characterized in the N,N’-diphenyl-N,N’-di-m-tolyl- 4,4’-diaminobiphenyl (TPD)/C60 p-n heterostructured OPV cells against applied voltages. The dependence of impedance responses on the layer thickness revealed a constant internal electric field that disturbed the carrier transport within the OPV cells. We applied this technique to new donor materials, in which thiophene units were inserted to the center of TPD. By increasing the number of thiophene units in TPD the fill-factor (FF) improved from 33% to 59%, which increased the power conversion efficiency (PCE). Based on the DMP analysis, we assigned the improvement in device performance to the reduction of the internal electric field.
文摘In-situ impedance spectroscopy (IS) observations of the photoconductivity of the carriers induced by photo-irradiation in organic hetero-junction structured photovoltaic devices are presented. In the IS measurements, the externally applied voltage and the dependence of the light intensity applied to the device were investigated. Analysis of the frequency characteristics which was measured by changing the light intensity shows there is a proportional relationship between the changes in the conductivities of the two components. The mobilities of the CuPc and C60 layers were calculated from the conductivities and were in the orders of 10﹣4 and 10﹣3 cm2/Vs, respectively.
文摘A polycrystalline ceramic, a new type of complex tungsten bronze type structure, having a general formula Li2Pb2Y2W2Ti4V4O30 has been prepared relatively at low temperature using a mixedoxide technique after optimizing the calcination conditions on the basis of thermal analysis. The material has been characterized by different experimental techniques. The formation of the material under the reported conditions has been confirmed by an X-ray diffraction technique. A preliminary structural analysis of the material showed the formation of single phase compound in an orthorhombic crystal structure at room temperature. Studies of dielectric properties (εr, tanδ ) of the above compound as a function of temperature at different frequencies exhibit a ferroelectric phase transition of diffuse type. The electrical properties of the material have been studied using ac impedance spectroscopy technique. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructure. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The bulk resistance, evaluated from complex impedance spectra, is found to decrease with rise in temperature, exhibiting a typical negative temperature co-efficient of resistance (NTCR) – type behavior similar to that of semiconductors. A small contribution of grain boundary effect was also observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The ac conductivity spectra exhibit a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law.