Insulation performance of high voltage IGBT modules is one of the key attributes in power system applications.However,the existing standards of IGBT devices and research on the evaluation of insulation performance of ...Insulation performance of high voltage IGBT modules is one of the key attributes in power system applications.However,the existing standards of IGBT devices and research on the evaluation of insulation performance of high voltage IGBT modules are insufficient;for example,partial discharge resistance under DC voltage blocking condition is not considered.In this paper,a new test was proposed to allow the measurement of partial discharges in all the components of IGBT modules under DC voltage.The topology of the measuring circuit is arranged in the polarity discrimination way to exclude the interference,and the voltage and discharge current waveforms during the partial discharge process are measured by the wideband time domain measurement technique.According to the proposed test,the discharge phenomenon of the IGBT modules below the rating voltage were detected.A comprehensive waveform analysis on the voltage and discharge current was performed,and the influence of the applied voltage on the waveform parameters was obtained.The waveform parameters are influenced by the applied voltage and insulation structure,which enables the discrimination of the causes of the observed partial discharge in the IGBT module under DC voltage by the waveform analysis technique.Based on the waveform analysis technique,the types and causes of the observed partial discharges were discussed and inferred,and the correctness of the inference was further verified by observation.The proposed test and waveform analysis technique provide the possibility to evaluate and distinguish partial discharges in the high voltage IGBT module under DC voltage,which may be helpful to insulation performance evaluation and insulation defect diagnosis in high voltage IGBT module.展开更多
Experimental and numerical studies on the dynamic cable tension of a subsea module during semi-submerged hoisting tests are performed. The experiments are carried out in irregular waves and the time-domain numerical s...Experimental and numerical studies on the dynamic cable tension of a subsea module during semi-submerged hoisting tests are performed. The experiments are carried out in irregular waves and the time-domain numerical simulations are conducted using the software “Simulation of Marine Operations”. The numerical formulation is validated through a comparison with experimental test measurements. The effects of the significant wave height, spectral peak period,and wave direction on the dynamic effect in the main sling and sub-slings are then investigated numerically. The relationship between the wave parameters and the dynamic effect is identified in the time and frequency domains,enabling the allowable sea states to be partially specified. The extreme dynamic effects in all slings under different wave conditions are estimated by using cumulative distribution functions of the Gumbel distribution. The results show that it is reasonable to model a complex subsea module via slender elements and depth-dependent coefficients in simulations of offshore operations. Lowering operations are safer if the wave height is 1 m and the wave period is larger than 8 s because the wave steepness is sufficient for the maximum possible dynamic effect to remain below 0.9. The dynamic tension may decrease when the wave direction is approximately 150°. It is dangerous for subsea modules to encounter lateral waves while entering the water because large overloads and underloads in the extreme dynamic tension may cause snap loads to occur and the slings to become slack.展开更多
Let R be a domain.In this paper,we show that if R is one dimensional,then R is a Noetherian Warfield domain if and only if every maximal ideal of R is 2-generated and for every maximal ideal M of R,M is divisorial in ...Let R be a domain.In this paper,we show that if R is one dimensional,then R is a Noetherian Warfield domain if and only if every maximal ideal of R is 2-generated and for every maximal ideal M of R,M is divisorial in the ring(M:M).We also prove that a Noetherian domain R is a Noetherian Warfield domain if and only if for every maximal ideal M of R,M^(2) can be generated by two elements.Finally,we give a sufficient condition under which all ideals of R are strongly Gorenstein projective.展开更多
Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular sig...Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular signal transduction. Every member of the MAGUK family contains a guanylate kinase-like (GK) domain, which has evolved from the enzyme catalyzing GMP to GDP conversion to become a protein-protein interaction module with no enzymatic activity. Mutations of MAGUKs are linked to a number of human diseases, including autism and hereditary deafness. In this review, we summarize the structural basis governing cellular function of various members of the MAGUKs. In particular, we focus on recent discoveries of MAGUK GKs as specific phospho-protein interaction modules, and discuss functional implications and connections to human diseases of such regulated MAGUK GK/target interactions.展开更多
RLWI (Riserless Light Well Intervention) technology has the advantage of utilizing a special subsea lubricator to perform intervention activities in water depths of up to 1,200 m without the need for the marine rise...RLWI (Riserless Light Well Intervention) technology has the advantage of utilizing a special subsea lubricator to perform intervention activities in water depths of up to 1,200 m without the need for the marine risers. Utilizing the technology, oil companies have been able to save up to 50% on the intervention costs. However, in the last five years, it has seen up to 25% downtime due to waiting on weather (wow). Thus, in this manuscript, it is attempted to identify the critical elements of the module deployment system and analyze their significance in the objective of raising the operational weather limit. Critical failure modes were found to be failure of crane wire due to excess loading, failure of the lower cursor system due to the impact loading and clashing of the module with the moonpool walls. Analysis of the module deployment system against these failure modes was ensued by using Orcaflex. The results showed the moonpool sea state to be the defining parameter. Although, changing moonpool dimensions affect hydrodynamics positively, however it's significance is small due to dependency on the vessel's breadth. Based on these results and the available data for the analysis, a recommended system particular was tested. Significance improvement, in lowering the risk of failure was observed.展开更多
基金This work was supported by the National Natural Science Foundation of China-State Grid Corporation Joint Fund for Smart Grid(No.U1766219)the Fundamental Research Funds for the Central Universities(No.2017XS027).
文摘Insulation performance of high voltage IGBT modules is one of the key attributes in power system applications.However,the existing standards of IGBT devices and research on the evaluation of insulation performance of high voltage IGBT modules are insufficient;for example,partial discharge resistance under DC voltage blocking condition is not considered.In this paper,a new test was proposed to allow the measurement of partial discharges in all the components of IGBT modules under DC voltage.The topology of the measuring circuit is arranged in the polarity discrimination way to exclude the interference,and the voltage and discharge current waveforms during the partial discharge process are measured by the wideband time domain measurement technique.According to the proposed test,the discharge phenomenon of the IGBT modules below the rating voltage were detected.A comprehensive waveform analysis on the voltage and discharge current was performed,and the influence of the applied voltage on the waveform parameters was obtained.The waveform parameters are influenced by the applied voltage and insulation structure,which enables the discrimination of the causes of the observed partial discharge in the IGBT module under DC voltage by the waveform analysis technique.Based on the waveform analysis technique,the types and causes of the observed partial discharges were discussed and inferred,and the correctness of the inference was further verified by observation.The proposed test and waveform analysis technique provide the possibility to evaluate and distinguish partial discharges in the high voltage IGBT module under DC voltage,which may be helpful to insulation performance evaluation and insulation defect diagnosis in high voltage IGBT module.
基金supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2021E048)the Heilongjiang Province Postdoctoral Foundation of China (Grant No. LBHZ19054)the Science and Technology Project of China National Offshore Oil Corporation (Grant No. CNOOC-KJ 135 GJJS 07 GC 2020-02)。
文摘Experimental and numerical studies on the dynamic cable tension of a subsea module during semi-submerged hoisting tests are performed. The experiments are carried out in irregular waves and the time-domain numerical simulations are conducted using the software “Simulation of Marine Operations”. The numerical formulation is validated through a comparison with experimental test measurements. The effects of the significant wave height, spectral peak period,and wave direction on the dynamic effect in the main sling and sub-slings are then investigated numerically. The relationship between the wave parameters and the dynamic effect is identified in the time and frequency domains,enabling the allowable sea states to be partially specified. The extreme dynamic effects in all slings under different wave conditions are estimated by using cumulative distribution functions of the Gumbel distribution. The results show that it is reasonable to model a complex subsea module via slender elements and depth-dependent coefficients in simulations of offshore operations. Lowering operations are safer if the wave height is 1 m and the wave period is larger than 8 s because the wave steepness is sufficient for the maximum possible dynamic effect to remain below 0.9. The dynamic tension may decrease when the wave direction is approximately 150°. It is dangerous for subsea modules to encounter lateral waves while entering the water because large overloads and underloads in the extreme dynamic tension may cause snap loads to occur and the slings to become slack.
基金This work was partially supported by the Department of Mathematics in Kyungpook National University and National Natural Science Foundation of China(Grant No.11671283)The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2017R1C1B1008085),Korea.
文摘Let R be a domain.In this paper,we show that if R is one dimensional,then R is a Noetherian Warfield domain if and only if every maximal ideal of R is 2-generated and for every maximal ideal M of R,M is divisorial in the ring(M:M).We also prove that a Noetherian domain R is a Noetherian Warfield domain if and only if for every maximal ideal M of R,M^(2) can be generated by two elements.Finally,we give a sufficient condition under which all ideals of R are strongly Gorenstein projective.
文摘Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular signal transduction. Every member of the MAGUK family contains a guanylate kinase-like (GK) domain, which has evolved from the enzyme catalyzing GMP to GDP conversion to become a protein-protein interaction module with no enzymatic activity. Mutations of MAGUKs are linked to a number of human diseases, including autism and hereditary deafness. In this review, we summarize the structural basis governing cellular function of various members of the MAGUKs. In particular, we focus on recent discoveries of MAGUK GKs as specific phospho-protein interaction modules, and discuss functional implications and connections to human diseases of such regulated MAGUK GK/target interactions.
文摘RLWI (Riserless Light Well Intervention) technology has the advantage of utilizing a special subsea lubricator to perform intervention activities in water depths of up to 1,200 m without the need for the marine risers. Utilizing the technology, oil companies have been able to save up to 50% on the intervention costs. However, in the last five years, it has seen up to 25% downtime due to waiting on weather (wow). Thus, in this manuscript, it is attempted to identify the critical elements of the module deployment system and analyze their significance in the objective of raising the operational weather limit. Critical failure modes were found to be failure of crane wire due to excess loading, failure of the lower cursor system due to the impact loading and clashing of the module with the moonpool walls. Analysis of the module deployment system against these failure modes was ensued by using Orcaflex. The results showed the moonpool sea state to be the defining parameter. Although, changing moonpool dimensions affect hydrodynamics positively, however it's significance is small due to dependency on the vessel's breadth. Based on these results and the available data for the analysis, a recommended system particular was tested. Significance improvement, in lowering the risk of failure was observed.