针对模块化多电平换流器(modular multilevel converter,MMC)高压直流输电技术(high voltage direct current,HVDC)受端交流系统故障引起的直流过电压问题,文中提出一种基于晶闸管的模块化组合式直流泄能装置拓扑及协调控制方法。该直...针对模块化多电平换流器(modular multilevel converter,MMC)高压直流输电技术(high voltage direct current,HVDC)受端交流系统故障引起的直流过电压问题,文中提出一种基于晶闸管的模块化组合式直流泄能装置拓扑及协调控制方法。该直流泄能拓扑包括模块化分布式泄能部分、限流电抗器和集中式泄能电阻3部分,对子模块工作模式进行设计,提出可避免直流泄能装置反复投切的弹性调节泄能的协调控制策略,推导直流泄能装置功率控制及其内部电气耦合关系,给出泄能装置元件参数的设计方法。最后,基于PSCAD/EMTDC搭建MMC-HVDC及所提出的直流泄能装置模型,研究单相和三相接地故障下直流泄能装置的特性及直流过电压抑制效果。结果表明,所提直流泄能装置在协调控制策略下能够分阶段弹性调节泄能功率,有效抑制直流过电压,并有利于故障后的快速恢复。展开更多
Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted ...Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.展开更多
文摘针对模块化多电平换流器(modular multilevel converter,MMC)高压直流输电技术(high voltage direct current,HVDC)受端交流系统故障引起的直流过电压问题,文中提出一种基于晶闸管的模块化组合式直流泄能装置拓扑及协调控制方法。该直流泄能拓扑包括模块化分布式泄能部分、限流电抗器和集中式泄能电阻3部分,对子模块工作模式进行设计,提出可避免直流泄能装置反复投切的弹性调节泄能的协调控制策略,推导直流泄能装置功率控制及其内部电气耦合关系,给出泄能装置元件参数的设计方法。最后,基于PSCAD/EMTDC搭建MMC-HVDC及所提出的直流泄能装置模型,研究单相和三相接地故障下直流泄能装置的特性及直流过电压抑制效果。结果表明,所提直流泄能装置在协调控制策略下能够分阶段弹性调节泄能功率,有效抑制直流过电压,并有利于故障后的快速恢复。
基金National Natural Science Foundation of China(No.51475459)Fundamental Research Funds for the Central Universities of China(No.2017XKQY040)Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.PAPD)
文摘Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.