Room temperature ionic liquid (RTILs) [BMIM]PF6 was used as a new kind of binder to construct a chemical modified carbon paste electrode (CPE) and the direct electrochemistry of hemoglobin (Hb), which was immobi...Room temperature ionic liquid (RTILs) [BMIM]PF6 was used as a new kind of binder to construct a chemical modified carbon paste electrode (CPE) and the direct electrochemistry of hemoglobin (Hb), which was immobilized on the surface of RTIL/CPE with the film of sodium alginate hydrogel, was studied by cyclic voltammetry. The presence of RTILs improved the direct electron transfer of Hb and a pair of well-defined quasi-revesible redox peaks appeared in pH 7.0 B-R buffer solution. The cathodic and anodic peak potentials were located at -0.383 V and -0.305 V with the formal potential (E^0) at -0.344 V (vs. SCE). In addition the immobilized Hb showed good electrocatalytic activity to the reduction of H2O2.展开更多
Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS). The polymer ...Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS). The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3) was 2.0 ×10^9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8 102.5%. The proposed method is simple, cheap and highly efficient.展开更多
Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force ...Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (〉10^8 T·m^- 1) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(Ⅲ)/ Fe(Ⅱ)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic properties of magnetite nanoparticles field, owing to the superparamagnetic Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.展开更多
基金supported by the National Natural.Science Foundation of China(No.20405008,20635020).
文摘Room temperature ionic liquid (RTILs) [BMIM]PF6 was used as a new kind of binder to construct a chemical modified carbon paste electrode (CPE) and the direct electrochemistry of hemoglobin (Hb), which was immobilized on the surface of RTIL/CPE with the film of sodium alginate hydrogel, was studied by cyclic voltammetry. The presence of RTILs improved the direct electron transfer of Hb and a pair of well-defined quasi-revesible redox peaks appeared in pH 7.0 B-R buffer solution. The cathodic and anodic peak potentials were located at -0.383 V and -0.305 V with the formal potential (E^0) at -0.344 V (vs. SCE). In addition the immobilized Hb showed good electrocatalytic activity to the reduction of H2O2.
基金supported by the System Foundation of Guangdong Food and Drug Administration and Guangdong Institute for Drug Control (nos. SN20106537, ZA20101509)
文摘Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS). The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3) was 2.0 ×10^9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8 102.5%. The proposed method is simple, cheap and highly efficient.
文摘Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (〉10^8 T·m^- 1) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(Ⅲ)/ Fe(Ⅱ)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic properties of magnetite nanoparticles field, owing to the superparamagnetic Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.