A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polyprop...A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polypropylene separator(Celgard 2400)close to the sulfur cathode.The special nanotubes are in-situ catalyzed by Fe3C nanoparticles.They could entrap lithium polysulfides(Li PSs)to restrain the shuttle effect and reduce the loss of active material.The battery with the modified separator and sulfur cathode shows an excellent cycle performance.It has a high rate performance,580.5 mAh/g at the high current rate of 4 C relative to 1075 mAh/g at 0.1 C.It also has an initial discharge capacity of 774.8 m Ah/g measured at 0.5 C and remains 721.8 mAh/g after 100 cycles with a high capacity retention of 93.2%.The outstanding performances are notable in recently reports with modified separator.展开更多
熔融碳酸盐燃料电池(MCFC)发电技术是一种清洁高效的新型发电技术,成本较高一直是制约其发展的重要因素。本文围绕电池堆成本问题,研究开发了一种新型改性阴极,将电池性能提升了2.6倍,这将减少同功率水平电池堆关键部件用量,降低了电池...熔融碳酸盐燃料电池(MCFC)发电技术是一种清洁高效的新型发电技术,成本较高一直是制约其发展的重要因素。本文围绕电池堆成本问题,研究开发了一种新型改性阴极,将电池性能提升了2.6倍,这将减少同功率水平电池堆关键部件用量,降低了电池堆成本。实验结果表明,在0.7 V放电条件下,采用改性阴极的电池功率密度达到了130 m W/cm^2,而采用原阴极的电池同条件下功率密度为50 m W/cm^2。该新型改性阴极的成功研出有助于大功率低成本的MCFC电池堆开发。展开更多
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
Landfill leachate is a complex effluent and it is difficult to deal with. Electrochemical methods have been considered as a promising alternative technology for treatment of landfill leachate with refractory organic c...Landfill leachate is a complex effluent and it is difficult to deal with. Electrochemical methods have been considered as a promising alternative technology for treatment of landfill leachate with refractory organic contaminants and heavy metals. Peroxi-coagulation(PC)process with iron anode and modified graphite felt cathode was developed for efficient landfill leachate concentrate treatment. Compared to electro-Fenton(EF) and electrocoagulation(EC) processes, the PC process was more cost-effective due to the combined action of·OH oxidation and iron hydroxides coagulation. A maximal TOC removal of 77.2% ± 1.4% was obtained after 360 min at initial p H = 5.0 and current density of 10 m A/cm^(2). After the PC process, concentrations of all seven heavy metals in the final effluents were below the allowable emission limits given by the present regulatory standards. The method preference for heavy metal removal was PC > EC > EF. Based on the three-dimensional fluorescence spectroscopy coupled with regional integration analysis during the PC treatment, the florescence peaks of both humic acids and fulvic acids disappeared after treatment for 360min. Decreasing trends were observed in the fluorescent regional standard volumes for aromatic protein Ⅰ(31.4%), aromatic protein Ⅱ(63.7%), fulvic acid-like(69.5%), soluble microbial by-product-like(75%) and humic acid-like regions(76.3%). The results indicate that comparing to the EF and EC process, the PC process provide a promising and more cost-effective alternative for the treatment of landfill leachate concentrate.展开更多
The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is ...The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.展开更多
The lithium polysulfide shuttle and sluggish sulfur reaction kinetics still pose significant challenges to lithium-sulfur(Li-S)batteries.The functional plane of Fe-MoSe_(2)@r GO nanohybrid with abundant defects has be...The lithium polysulfide shuttle and sluggish sulfur reaction kinetics still pose significant challenges to lithium-sulfur(Li-S)batteries.The functional plane of Fe-MoSe_(2)@r GO nanohybrid with abundant defects has been designed and applied in Li-S batteries to develop the functional separator and multi-layer sulfur cathode.The cell with a functional separator exhibits a retention capacity of 462 m Ah g^(-1)after the 1000th at 0.5 C and 516 m Ah g^(-1)after the 600th at 0.3 C.Even at low electrolyte conditions(7.0μL_(mgsulfur)^(-1)and 15μL_(mgsulfur)^(-1))under high sulfur loadings(3.46 mg cm^(-2)and 3.73 mg cm^(-2)),the cell still presents high reversible discharge capacities 679 and 762 m Ah g^(-1)after 70 cycles,respectively.Further,at sulfur loadings up to 8.26 and 5.2 mg cm^(-2),the cells assembled with the bi-layers sulfur cathode and the tri-layers sulfur cathode give reversible capacities of 3.3 m Ah cm^(-2)after the 100th cycle and 3.0 m Ah cm^(-2)after the 120th cycle,respectively.This research not only demonstrates that the FeMoSe_(2)@r GO functional plane is successfully designed and applied in Li-S batteries with superior electrochemical performances but also paves the novel way for developing a unique multi-layer cathode technique to enhance and advance the electrochemical behavior of Li-S cells at a high-sulfur-loading cathode under lean electrolyte/sulfur(E/S)ratio.展开更多
To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemic...To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.展开更多
基金supported by the National Natural Science Foundation of China(Grant no.51672075,21271069,51772092,51704106)Science and Technology Program of Hunan Province(Grant no.2015JC3049)
文摘A new Fe3C-N-doped reduced graphene oxide(Fe3C-N-rGO)prepared by a facile method is used as a separator for high performance lithium-sulfur(Li-S)batteries.The Fe3C-N-rGO is coated on the surface of commercial polypropylene separator(Celgard 2400)close to the sulfur cathode.The special nanotubes are in-situ catalyzed by Fe3C nanoparticles.They could entrap lithium polysulfides(Li PSs)to restrain the shuttle effect and reduce the loss of active material.The battery with the modified separator and sulfur cathode shows an excellent cycle performance.It has a high rate performance,580.5 mAh/g at the high current rate of 4 C relative to 1075 mAh/g at 0.1 C.It also has an initial discharge capacity of 774.8 m Ah/g measured at 0.5 C and remains 721.8 mAh/g after 100 cycles with a high capacity retention of 93.2%.The outstanding performances are notable in recently reports with modified separator.
文摘熔融碳酸盐燃料电池(MCFC)发电技术是一种清洁高效的新型发电技术,成本较高一直是制约其发展的重要因素。本文围绕电池堆成本问题,研究开发了一种新型改性阴极,将电池性能提升了2.6倍,这将减少同功率水平电池堆关键部件用量,降低了电池堆成本。实验结果表明,在0.7 V放电条件下,采用改性阴极的电池功率密度达到了130 m W/cm^2,而采用原阴极的电池同条件下功率密度为50 m W/cm^2。该新型改性阴极的成功研出有助于大功率低成本的MCFC电池堆开发。
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
基金supported by the National Key R&D Program of China(No.2018YFC1802500)the National Natural Science Foundation of China(No.42077171)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.20Y02ESPCT)。
文摘Landfill leachate is a complex effluent and it is difficult to deal with. Electrochemical methods have been considered as a promising alternative technology for treatment of landfill leachate with refractory organic contaminants and heavy metals. Peroxi-coagulation(PC)process with iron anode and modified graphite felt cathode was developed for efficient landfill leachate concentrate treatment. Compared to electro-Fenton(EF) and electrocoagulation(EC) processes, the PC process was more cost-effective due to the combined action of·OH oxidation and iron hydroxides coagulation. A maximal TOC removal of 77.2% ± 1.4% was obtained after 360 min at initial p H = 5.0 and current density of 10 m A/cm^(2). After the PC process, concentrations of all seven heavy metals in the final effluents were below the allowable emission limits given by the present regulatory standards. The method preference for heavy metal removal was PC > EC > EF. Based on the three-dimensional fluorescence spectroscopy coupled with regional integration analysis during the PC treatment, the florescence peaks of both humic acids and fulvic acids disappeared after treatment for 360min. Decreasing trends were observed in the fluorescent regional standard volumes for aromatic protein Ⅰ(31.4%), aromatic protein Ⅱ(63.7%), fulvic acid-like(69.5%), soluble microbial by-product-like(75%) and humic acid-like regions(76.3%). The results indicate that comparing to the EF and EC process, the PC process provide a promising and more cost-effective alternative for the treatment of landfill leachate concentrate.
基金supported by the National Natural Science Foundation of China(No.22075262)。
文摘The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea.
基金the support from the National Natural Science Foundation of China(No.21373189)the Science and Technology Department of Henan Province(No.212102210586)the Top-Notch Talents Program of Henan Agricultural University(No.30501035)。
文摘The lithium polysulfide shuttle and sluggish sulfur reaction kinetics still pose significant challenges to lithium-sulfur(Li-S)batteries.The functional plane of Fe-MoSe_(2)@r GO nanohybrid with abundant defects has been designed and applied in Li-S batteries to develop the functional separator and multi-layer sulfur cathode.The cell with a functional separator exhibits a retention capacity of 462 m Ah g^(-1)after the 1000th at 0.5 C and 516 m Ah g^(-1)after the 600th at 0.3 C.Even at low electrolyte conditions(7.0μL_(mgsulfur)^(-1)and 15μL_(mgsulfur)^(-1))under high sulfur loadings(3.46 mg cm^(-2)and 3.73 mg cm^(-2)),the cell still presents high reversible discharge capacities 679 and 762 m Ah g^(-1)after 70 cycles,respectively.Further,at sulfur loadings up to 8.26 and 5.2 mg cm^(-2),the cells assembled with the bi-layers sulfur cathode and the tri-layers sulfur cathode give reversible capacities of 3.3 m Ah cm^(-2)after the 100th cycle and 3.0 m Ah cm^(-2)after the 120th cycle,respectively.This research not only demonstrates that the FeMoSe_(2)@r GO functional plane is successfully designed and applied in Li-S batteries with superior electrochemical performances but also paves the novel way for developing a unique multi-layer cathode technique to enhance and advance the electrochemical behavior of Li-S cells at a high-sulfur-loading cathode under lean electrolyte/sulfur(E/S)ratio.
基金Funded by the National High Technology Research and Development Program of China(863 Program)(No.2015AA034600)Province Science and Technology in Anhui(No.1301021011)
文摘To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.
基金supported by the National Natural Science Foundation of China (21073120, 20773087, 21006063)Science and Technology Commission of Shanghai Municipality, China (09DZ1203603, 10DZ1202702)~~