期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CNN-RNN网络的中国冬小麦估产
被引量:
8
1
作者
赫晓慧
罗浩田
+2 位作者
乔梦佳
田智慧
周广胜
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第17期124-132,共9页
在大范围内快速、准确地预估作物产量,对作物管理、粮食安全、粮食贸易和决策有重要意义。遥感为大规模作物估产提供了便利,大多数研究者结合深度学习和遥感影像取得了较好的结果。然而,农作物生长状态随时间变化,其产量具有非线性时空...
在大范围内快速、准确地预估作物产量,对作物管理、粮食安全、粮食贸易和决策有重要意义。遥感为大规模作物估产提供了便利,大多数研究者结合深度学习和遥感影像取得了较好的结果。然而,农作物生长状态随时间变化,其产量具有非线性时空特征,单一的深度学习方法无法充分利用影像信息。因此,该研究提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)和门控循环单元(Gated Recurrent Unit,GRU)混合神经网络估产模型(CNN-GRU),利用CNN从多光谱遥感影像中提取丰富的空间-光谱特征,在此基础上,结合GRU从多时相遥感影像中自适应学习冬小麦生育期各阶段之间的时间依赖,从多尺度融合冬小麦的生长特征并对其产量进行回归预测。该研究以全国冬小麦主产区为研究区,选取2001—2018年MODIS影像和冬小麦产量数据,构建了冬小麦估产数据集,并验证了CNN-GRU估产模型的性能。结果表明:1)以2016—2018年估产样本作为测试集,CNN-GRU估产模型的均方根误差(Root Mean Square Error,RMSE)年平均值为818.3 kg/hm^(2),相较于CNN、GRU、支持向量回归(Support Vector Regression,SVR)、随机森林(Random Forest,RF)和决策树(Decision Tree,DT)模型分别降低了20.13%、18.81%、29.51%、34.84%和36.57%;2)将冬小麦整个生育期划分为6个时间窗,CNN-GRU估产模型在灌浆-成熟期时精度最高,RMSE为817 kg/hm^(2),而抽穗-开花期的RMSE为823 kg/hm^(2),相较于灌浆-成熟期低0.7%。因此,该估产模型有能力提前2个月预测全国冬小麦主产区产量。
展开更多
关键词
产量
模型
卷积神经网络
循环神经网络
冬小麦
预测
多时相遥感影像
下载PDF
职称材料
题名
基于CNN-RNN网络的中国冬小麦估产
被引量:
8
1
作者
赫晓慧
罗浩田
乔梦佳
田智慧
周广胜
机构
郑州大学地球科学与技术学院
郑州大学信息工程学院
中国气象科学研究院郑州大学生态气象联合实验室
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第17期124-132,共9页
基金
河南省重大科技专项--面向超算的黄河模拟器构建与服务关键技术研究(201400210900)。
文摘
在大范围内快速、准确地预估作物产量,对作物管理、粮食安全、粮食贸易和决策有重要意义。遥感为大规模作物估产提供了便利,大多数研究者结合深度学习和遥感影像取得了较好的结果。然而,农作物生长状态随时间变化,其产量具有非线性时空特征,单一的深度学习方法无法充分利用影像信息。因此,该研究提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)和门控循环单元(Gated Recurrent Unit,GRU)混合神经网络估产模型(CNN-GRU),利用CNN从多光谱遥感影像中提取丰富的空间-光谱特征,在此基础上,结合GRU从多时相遥感影像中自适应学习冬小麦生育期各阶段之间的时间依赖,从多尺度融合冬小麦的生长特征并对其产量进行回归预测。该研究以全国冬小麦主产区为研究区,选取2001—2018年MODIS影像和冬小麦产量数据,构建了冬小麦估产数据集,并验证了CNN-GRU估产模型的性能。结果表明:1)以2016—2018年估产样本作为测试集,CNN-GRU估产模型的均方根误差(Root Mean Square Error,RMSE)年平均值为818.3 kg/hm^(2),相较于CNN、GRU、支持向量回归(Support Vector Regression,SVR)、随机森林(Random Forest,RF)和决策树(Decision Tree,DT)模型分别降低了20.13%、18.81%、29.51%、34.84%和36.57%;2)将冬小麦整个生育期划分为6个时间窗,CNN-GRU估产模型在灌浆-成熟期时精度最高,RMSE为817 kg/hm^(2),而抽穗-开花期的RMSE为823 kg/hm^(2),相较于灌浆-成熟期低0.7%。因此,该估产模型有能力提前2个月预测全国冬小麦主产区产量。
关键词
产量
模型
卷积神经网络
循环神经网络
冬小麦
预测
多时相遥感影像
Keywords
yield
models
convolutional
neural
network
models
recurrent
neural
network
models
winter
wheat
estimation
multi
temporal
remote
sensing
image
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CNN-RNN网络的中国冬小麦估产
赫晓慧
罗浩田
乔梦佳
田智慧
周广胜
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部