An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple ...An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.展开更多
Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent perfo...Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent performance of the low probability of intercept(LPI). In order to reduce the emission times of the radar, a novel sensor selection strategy based on an improved interacting multiple model particle filter(IMMPF) tracking method is presented. Firstly the IMMPF tracking method is improved by increasing the weight of the particle which is close to the system state and updating the model probability of every particle. Then a sensor selection approach for LPI takes use of both the target's maneuverability and the state's uncertainty to decide the radar's radiation time. The radar will work only when the target's maneuverability and the state's uncertainty exceed the control capability of the passive sensors. Tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations.展开更多
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it...Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.展开更多
Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution a...Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution according to a proper likelihood function.Seldom works perform a framework of interactive multiple models (IMM) to track a human for challenging problems,such as uncertainty of motion styles,imprecise detection of feature points and ambiguity of joint location.This paper presents a two-layer filter framework based on IMM to track human motion.First,a method of model based points location is proposed to detect key feature points automatically and the filter in the first layer is performed to estimate the undetected points.Second,multiple models of motion are learned by the prior motion data with ridge regression and the IMM algorithm is used to estimate the quaternion vectors of joints rotation.Finally,experiments using real images sequences,simulation videos and 3D voxel data demonstrate that this human tracking framework is efficient.展开更多
The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a nov...The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed.The framework of interactive multiple model(IMM) is used to realize identification of motion pattern,and a central difference Kalman filter(CDKF) is selected as the model filter of IMM.Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information,the hardware cost of the observation system for multiple sensors is adopted,meanwhile,according to the data assimilation technique in Ensemble Kalman filter(En KF),a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise.On that basis,these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way.The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors.The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(...To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.展开更多
For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents ...For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.展开更多
针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS...针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS)理论,本文根据PHD的物理空间(Physical space)描述法推导得到了MM-PHD平滑器的后向更新公式.由于MM-PHD前向–后向平滑器的递推公式中包含有多个积分,因此它在非线性非高斯条件下没有解析的表达形式.故本文又给出了它的序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明,与MM-PHD滤波器相比,MM-PHD平滑器能够更加精确地估计多个机动目标的个数和状态,但MM-PHD平滑器存在一定的时间滞后,并且需要耗费更大的计算代价.展开更多
基金the University of Tabriz through a Grant scheme No.808.
文摘An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.
基金supported by the Fundamental Research Funds for the Central Universities(NJ20140010)the Scientific Research Start-up Funding from Jiangsu University of Science and Technology+1 种基金the Scienceand Technology on Electronic Information Control Laboratory Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Sensor platforms with active sensing equipment such as radar may betray their existence, by emitting energy that will be intercepted by enemy surveillance sensors. The radar with less emission has more excellent performance of the low probability of intercept(LPI). In order to reduce the emission times of the radar, a novel sensor selection strategy based on an improved interacting multiple model particle filter(IMMPF) tracking method is presented. Firstly the IMMPF tracking method is improved by increasing the weight of the particle which is close to the system state and updating the model probability of every particle. Then a sensor selection approach for LPI takes use of both the target's maneuverability and the state's uncertainty to decide the radar's radiation time. The radar will work only when the target's maneuverability and the state's uncertainty exceed the control capability of the passive sensors. Tracking accuracy and LPI performance are demonstrated in the Monte Carlo simulations.
基金Supported by the National Nature Science Foundations of China(No.61300214,U1204611,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+3 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universitiesthe Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm.
基金the Research Fund for the Young Teacher of Shanghai(No.Z-2009-12)the New Teacher Fund of Shanghai University of Electric Power (No.K-2010-16)
文摘Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution according to a proper likelihood function.Seldom works perform a framework of interactive multiple models (IMM) to track a human for challenging problems,such as uncertainty of motion styles,imprecise detection of feature points and ambiguity of joint location.This paper presents a two-layer filter framework based on IMM to track human motion.First,a method of model based points location is proposed to detect key feature points automatically and the filter in the first layer is performed to estimate the undetected points.Second,multiple models of motion are learned by the prior motion data with ridge regression and the IMM algorithm is used to estimate the quaternion vectors of joints rotation.Finally,experiments using real images sequences,simulation videos and 3D voxel data demonstrate that this human tracking framework is efficient.
基金Supported by the Postdoctoral Science Foundation of China(No.2014M551999)the Open Foundation of Key Laboratory of Spectral Imaging Technology of the Chinese Academy of Sciences(No.LSIT201711D)
文摘The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed.The framework of interactive multiple model(IMM) is used to realize identification of motion pattern,and a central difference Kalman filter(CDKF) is selected as the model filter of IMM.Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information,the hardware cost of the observation system for multiple sensors is adopted,meanwhile,according to the data assimilation technique in Ensemble Kalman filter(En KF),a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise.On that basis,these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way.The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors.The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
基金The National Natural Science Foundation of China(No.61273236)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637),China Scholarship Council
文摘To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
文摘For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.
文摘针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS)理论,本文根据PHD的物理空间(Physical space)描述法推导得到了MM-PHD平滑器的后向更新公式.由于MM-PHD前向–后向平滑器的递推公式中包含有多个积分,因此它在非线性非高斯条件下没有解析的表达形式.故本文又给出了它的序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明,与MM-PHD滤波器相比,MM-PHD平滑器能够更加精确地估计多个机动目标的个数和状态,但MM-PHD平滑器存在一定的时间滞后,并且需要耗费更大的计算代价.