A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to it...A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed.展开更多
It is practically impossible and unnecessary to obtain spatial-temporal information of any given continuous phenomenon at every point within a given geographic area. The most practical approach has always been to obta...It is practically impossible and unnecessary to obtain spatial-temporal information of any given continuous phenomenon at every point within a given geographic area. The most practical approach has always been to obtain information about the phenomenon as in many sample points as possible within the given geographic area and estimate the values of the unobserved points from the values of the observed points through spatial interpolation. However, it is important that users understand that different interpolation methods have their strength and weaknesses on different datasets. It is not correct to generalize that a given interpolation method (e.g. Kriging, Inverse Distance Weighting (IDW), Spline etc.) does better than the other without taking into cognizance, the type and nature of the dataset and phenomenon involved. In this paper, we theoretically, mathematically and experimentally evaluate the performance of Kriging, IDW and Spline interpolation methods respectively in estimating unobserved elevation values and modeling landform. This paper undertakes a comparative analysis based on the prediction mean error, prediction root mean square error and cross validation outputs of these interpolation methods. Experimental results for each of the method on both biased and normalized data show that Spline provided a better and more accurate interpolation within the sample space than the IDW and Kriging methods. The choice of an interpolation method should be phenomenon and data set structure dependent.展开更多
基金supported by NSF of USA under Grant No.DMI-0422126The last author is supported by the National Natural Science Foundation of China under Grant Nos.60625202,60533070.
文摘A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed.
文摘It is practically impossible and unnecessary to obtain spatial-temporal information of any given continuous phenomenon at every point within a given geographic area. The most practical approach has always been to obtain information about the phenomenon as in many sample points as possible within the given geographic area and estimate the values of the unobserved points from the values of the observed points through spatial interpolation. However, it is important that users understand that different interpolation methods have their strength and weaknesses on different datasets. It is not correct to generalize that a given interpolation method (e.g. Kriging, Inverse Distance Weighting (IDW), Spline etc.) does better than the other without taking into cognizance, the type and nature of the dataset and phenomenon involved. In this paper, we theoretically, mathematically and experimentally evaluate the performance of Kriging, IDW and Spline interpolation methods respectively in estimating unobserved elevation values and modeling landform. This paper undertakes a comparative analysis based on the prediction mean error, prediction root mean square error and cross validation outputs of these interpolation methods. Experimental results for each of the method on both biased and normalized data show that Spline provided a better and more accurate interpolation within the sample space than the IDW and Kriging methods. The choice of an interpolation method should be phenomenon and data set structure dependent.