Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and contro...Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and controlling quality in highdimensional multistage processes are studied. We propose a deviance residual-based multivariate exponentially weighted moving average(MEWMA) control chart with a variable selection procedure. We demonstrate that it outperforms the existing multivariate SPC charts in terms of out-of-control average run length(ARL) for the detection of process mean shift.展开更多
The problems of identification and stabilization of a class of Hammerstein systems over a wireless network are investigated in this paper. A new approach for the proof of iterative identification is presented first. T...The problems of identification and stabilization of a class of Hammerstein systems over a wireless network are investigated in this paper. A new approach for the proof of iterative identification is presented first. Then a guaranteed performance controller is designed to stabilize the system. The effectiveness of the proposed approach is demonstrated by numerical examples.展开更多
Numerous previous literature has attempted to apply machine learning techniques to analyze relationships between energy variables in energy consumption.However,most machine learning methods are primarily used for pred...Numerous previous literature has attempted to apply machine learning techniques to analyze relationships between energy variables in energy consumption.However,most machine learning methods are primarily used for prediction through complicated learning processes at the expense of interpretability.Those methods have difficulties in evaluating the effect of energy variables on energy consumption and especially capturing their heterogeneous relationship.Therefore,to identify the energy consumption of the heterogeneous relationships in actual buildings,this study applies the MOdel-Based recursive partitioning(MOB)algorithm to the 2012 CBECS survey data,which would offer representative information about actual commercial building characteristics and energy consumption.With resultant tree-structured subgroups,the MOB tree reveals the heterogeneous effect of energy variables and mutual influences on building energy consumptions.The results of this study would provide insights for architects and engineers to develop energy conservative design and retrofit in U.S.office buildings.展开更多
基金supported by the Qatar National Research Fund(NPRP5-364-2-142NPRP7-1040-2-293)
文摘Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and controlling quality in highdimensional multistage processes are studied. We propose a deviance residual-based multivariate exponentially weighted moving average(MEWMA) control chart with a variable selection procedure. We demonstrate that it outperforms the existing multivariate SPC charts in terms of out-of-control average run length(ARL) for the detection of process mean shift.
基金supported by Shanghai Engineering Research Center of Green Energy Grid-Connected Technology Center(No.13DZ2251900)Shanghai Natural Science Foundation(No.15ZR1417500)+1 种基金Young Teacher Training Program and Industry-Study-Research Cooperation Project from Shanghai Education Commission(Nos.ZZsdl13008 and CXYsdl14012)Science and Technology Commission of Shanghai Municipality(No.11jc1404000)
文摘The problems of identification and stabilization of a class of Hammerstein systems over a wireless network are investigated in this paper. A new approach for the proof of iterative identification is presented first. Then a guaranteed performance controller is designed to stabilize the system. The effectiveness of the proposed approach is demonstrated by numerical examples.
文摘Numerous previous literature has attempted to apply machine learning techniques to analyze relationships between energy variables in energy consumption.However,most machine learning methods are primarily used for prediction through complicated learning processes at the expense of interpretability.Those methods have difficulties in evaluating the effect of energy variables on energy consumption and especially capturing their heterogeneous relationship.Therefore,to identify the energy consumption of the heterogeneous relationships in actual buildings,this study applies the MOdel-Based recursive partitioning(MOB)algorithm to the 2012 CBECS survey data,which would offer representative information about actual commercial building characteristics and energy consumption.With resultant tree-structured subgroups,the MOB tree reveals the heterogeneous effect of energy variables and mutual influences on building energy consumptions.The results of this study would provide insights for architects and engineers to develop energy conservative design and retrofit in U.S.office buildings.