In this study we extend the dimension-reduced projection-four dimensional variational data assimilation (DRP-4DVar) approach to allow the analysis time to be tunable, so that the intervals between analysis time and ...In this study we extend the dimension-reduced projection-four dimensional variational data assimilation (DRP-4DVar) approach to allow the analysis time to be tunable, so that the intervals between analysis time and observation times can be shortened. Due to the limits of the perfect-model assumption and the tangentlinear hypothesis, the analysis-time tuning is expected to have the potential to further improve analyses and forecasts. Various sensitivity experiments using the Lorenz-96 model are conducted to test the impact of analysistime tuning on the performance of the new approach under perfect and imperfect model scenarios, respectively. Comparing three DRP-4DVar schemes having the analysis time at the start, middle, and end of the assimilation window, respectively, it is found that the scheme with the analysis time in the middle of the window outperforms the others, on the whole. Moreover, the advantage of this scheme is more pronounced when a longer assimilation window is adopted or more observations are assimilated.展开更多
基金supported by the Special Project of the Meteorological Sector program Grant No GYHY(QX) 200906011the 973 project (Grant No 2004CB418304)
文摘In this study we extend the dimension-reduced projection-four dimensional variational data assimilation (DRP-4DVar) approach to allow the analysis time to be tunable, so that the intervals between analysis time and observation times can be shortened. Due to the limits of the perfect-model assumption and the tangentlinear hypothesis, the analysis-time tuning is expected to have the potential to further improve analyses and forecasts. Various sensitivity experiments using the Lorenz-96 model are conducted to test the impact of analysistime tuning on the performance of the new approach under perfect and imperfect model scenarios, respectively. Comparing three DRP-4DVar schemes having the analysis time at the start, middle, and end of the assimilation window, respectively, it is found that the scheme with the analysis time in the middle of the window outperforms the others, on the whole. Moreover, the advantage of this scheme is more pronounced when a longer assimilation window is adopted or more observations are assimilated.