It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(M...It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.展开更多
A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is...A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data.展开更多
Time-limited dispatching(TLD)analysis of the full authority digital engine control(FADEC)systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial air...Time-limited dispatching(TLD)analysis of the full authority digital engine control(FADEC)systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial aircraft and aeroengines.In the time limited dispatch guidance document ARP5107B,a single-fault Markov model(MM)approach is proposed for TLD analysis.However,ARP5107B also requires that the loss of thrust control(LOTC)rate error calculated by applying the single-fault MM must be less than 5%when performing airworthiness certification.Firstly,the sources of accuracy errors in three kinds of MM are analyzed and specified through a case study of the general FADEC system,and secondly a two-fault MM considering maintenance policy is established through analyzing and calculating the expected repair time when two related faults happen.Finally,a specific FADEC system is given to study on the influence factors of accuracy error in the single-fault MM,and the results show that the accuracy error of the single-fault MM decreases with the increase of short or long prescribed dispatch time,and the range values of short time(ST)and long time(LT)are determined to satisfy the requirement of accuracy error within 5%.展开更多
Canopy architecture of windbrpak is vital in agriculture, meteorological and ecological applications. In this study, computational fluid dynamics (CFD) and field experiments were used to investigate the flow charact...Canopy architecture of windbrpak is vital in agriculture, meteorological and ecological applications. In this study, computational fluid dynamics (CFD) and field experiments were used to investigate the flow characteristics and flow resistance through vegetation canopies with several different leaf area densities ( Lad ). Compared with traditional modelling approaches, the present model introduced 3D architecture of the tree that contained a hard trunk, branches and artificial leaves to model the effect of leaves and the other parts of the canopy on airflow. Visual basic application (VBA) produced the 3D architecture of canopy. Simulations were made with the full closure model (FCM) and microcosmic model (MM). Canopies L.~ used in the simulations were 7,76, 18, 12 and 25, 89 m-1. The objectives of this paper are to analyze the contour of velocity (U) and turbulent kinetic energy (k) of two models in different leaf area densities, comparing the simulation results with experimental data/other works and investigate the real effects of the canopy on the airflow distribution. Results are encouraging, compared with the FCM, U and k of MM profiles qualitatively agree better with other works. Therefore, the model and method are recommended for future use in simulating turbulent flows in forest canopies.展开更多
In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulatio...In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measurem...展开更多
Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment o...Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factor a and the gust wind item wg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MMS). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25-26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.展开更多
基金supported by the Natural Science Foundation of Anhui Province(1708085QF149)。
文摘It is a tough problem to jointly detect and track a weak target, and it becomes even more challenging when the target is maneuvering. The above problem is formulated by using the Bayesian theory and a multiple model(MM) based filter is proposed. The filter presented uses the MM method to accommodate the multiple motions that a maneuvering target may travel under by adding a random variable representing the motion model to the target state. To strengthen the efficiency performance of the filter,the target existence variable is separated from the target state and the existence probability is calculated in a more efficient way. To examine the performance of the MM based approach, a typical track-before-detect(TBD) scenario with a maneuvering target is used for simulations. The simulation results indicate that the MM based filter proposed has a good performance in joint detecting and tracking of a weak and maneuvering target, and it is more efficient than the general MM method.
基金supported by the National Natural Science Foundation of China(No.51875113)the Natural Science Joint Guidance Foundation of the Heilongjiang Province of China(No.LH2019E027)the PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(No.XK2070021009),China。
文摘A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data.
基金supported by the National Natural Science Foundation of China(51705242)Shanghai Sailing Program(16YF1404900)the Fundamental Research Funds for the Central Universities(NS2015072)
文摘Time-limited dispatching(TLD)analysis of the full authority digital engine control(FADEC)systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial aircraft and aeroengines.In the time limited dispatch guidance document ARP5107B,a single-fault Markov model(MM)approach is proposed for TLD analysis.However,ARP5107B also requires that the loss of thrust control(LOTC)rate error calculated by applying the single-fault MM must be less than 5%when performing airworthiness certification.Firstly,the sources of accuracy errors in three kinds of MM are analyzed and specified through a case study of the general FADEC system,and secondly a two-fault MM considering maintenance policy is established through analyzing and calculating the expected repair time when two related faults happen.Finally,a specific FADEC system is given to study on the influence factors of accuracy error in the single-fault MM,and the results show that the accuracy error of the single-fault MM decreases with the increase of short or long prescribed dispatch time,and the range values of short time(ST)and long time(LT)are determined to satisfy the requirement of accuracy error within 5%.
基金National Natural Science Foundation of China(No.41371445)
文摘Canopy architecture of windbrpak is vital in agriculture, meteorological and ecological applications. In this study, computational fluid dynamics (CFD) and field experiments were used to investigate the flow characteristics and flow resistance through vegetation canopies with several different leaf area densities ( Lad ). Compared with traditional modelling approaches, the present model introduced 3D architecture of the tree that contained a hard trunk, branches and artificial leaves to model the effect of leaves and the other parts of the canopy on airflow. Visual basic application (VBA) produced the 3D architecture of canopy. Simulations were made with the full closure model (FCM) and microcosmic model (MM). Canopies L.~ used in the simulations were 7,76, 18, 12 and 25, 89 m-1. The objectives of this paper are to analyze the contour of velocity (U) and turbulent kinetic energy (k) of two models in different leaf area densities, comparing the simulation results with experimental data/other works and investigate the real effects of the canopy on the airflow distribution. Results are encouraging, compared with the FCM, U and k of MM profiles qualitatively agree better with other works. Therefore, the model and method are recommended for future use in simulating turbulent flows in forest canopies.
文摘In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measurem...
文摘Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factor a and the gust wind item wg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MMS). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25-26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.