The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitivel...The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures.展开更多
Shear-sliding mode(mode Ⅱ)fracture of rocks is a vital failure form in deep underground engineering.To gain deep insight into the anisotropic shear fracture behaviors of a typical shale under high normal stress condi...Shear-sliding mode(mode Ⅱ)fracture of rocks is a vital failure form in deep underground engineering.To gain deep insight into the anisotropic shear fracture behaviors of a typical shale under high normal stress conditions,a series of direct shear tests were conducted on double-notched specimens in three typical bedding orientations(i.e.,the arrester,divider,short-transverse orientations)and under five normal stresses.The modeⅡfracture toughness(K_(Ⅱc))is found to exhibit a significant 3D anisotropy.The maximum K_(Ⅱc)is obtained in the divider orientation,followed by those in the arrester and short-transverse orientations.In contrast,the 3D anisotropy in the critical modeⅡenergy release rate(G_(Ⅱc))is not as significant as that in K_(Ⅱc),and G_(Ⅱc)in the arrester orientation is quite close to that in the divider orientation.The anisotropy in the prepeak input energy accumulated during shearing is found to be exactly consistent with that in G_(Ⅱc),which has not been noted before.Furthermore,the anisotropies in the modeⅡfracture resistances will,unexpectedly,not be weakened by the high normal stress.Owing to the layered structures,tensile cracks are involved during the modeⅡfracture process,resulting in the formation of rough fracture surfaces.展开更多
In this study, in-plane mixed mode-Ⅰ/Ⅱ fatigue crack growth simulations and experiments are performed for the Al 7075-T651 aluminum alloy which is widely used in the aerospace industry. Tests are carried out under d...In this study, in-plane mixed mode-Ⅰ/Ⅱ fatigue crack growth simulations and experiments are performed for the Al 7075-T651 aluminum alloy which is widely used in the aerospace industry. Tests are carried out under different mode mixity ratios to evaluate the applicability of a fracture criterion developed in a previous study to mixed mode-Ⅰ/Ⅱ fatigue crack growth tests.Results obtained from the analyses and experiments are compared with existing and developed criteria in terms of crack growth lives. Compact Tension Shear(CTS) specimens, which enable mixed mode loading with loading devices under different loading angles, are used in the simulations and experiments. In an effort to model and simulate the actual conditions in the experiments, crack surfaces of fractured specimens are scanned, crack paths are modeled exactly, and contacts are defined between the contact surfaces of a specimen and the loading device for each crack propagation step in the analyses. Having computed the mixed mode stress intensity factors from the numerical analyses, propagation life cycles are predicted by existing and the developed mixed mode-Ⅰ/Ⅱ criteria and then compared with experimental results.展开更多
Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that...Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain-time curve comprises three stages:the linear deformation stage,the micro-cracking stage and the macroscopic crack propagation.The strain in the direction of the original notch plane is negative,due to restraining effect of compressive loading applied to the original notch plane.Both σ1 and τmax are increased as the load increases,but the slope of τmax is larger than that of σ1 and the value of τmax is always larger than that of σ1.Therefore,τmax reaches its limited value at peak load before σ1 and results in Mode Ⅱ fracture of rock.Shear-box(i.e.compression-shear) test becomes a potential standard method for achieving the true Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock.展开更多
Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode I, Mode II and mixed mode I–II fracture, respectively. M...Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode I, Mode II and mixed mode I–II fracture, respectively. Microscopic characteristics of the three fracture modes of brittle rock were studied by SEM technique in order to analyze fracture behaviors and better understand fracture mechanisms of different fracture modes of brittle rock. Test results show that the microscopic characteristics of different fracture modes correspond to different fracture mechanisms. The surface of Mode I fracture has a great number of sparse and steep slip-steps with few tearing ridges and shows strong brittleness. In the surface of Mode II fracture there exist many tearing ridges and densely distributed parallel slip-steps and it is attributed to the action of shear stress. The co-action of tensile and shear stresses results in brittle cleavage planes mixed with streamline patterns and tearing ridges in the surface of mixed mode I–II fracture. The measured Mode II fracture toughness K II C and mixed mode I–II fracture toughness K mC are larger than Mode I fracture toughness K I C · K II C is about 3.5 times K I C, and KmC is about 1.2 times K I C.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.72031326)the National Natural Science Foundation of China(No.52079091)+2 种基金supported by Academy of Finland under Grant No.322518supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ20-01M。
文摘The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures.
基金Project(12172240)supported by the National Natural Science Foundation of ChinaProject(2021YFH0030)supported by the Science&Technology Department of Sichuan Province,China。
文摘Shear-sliding mode(mode Ⅱ)fracture of rocks is a vital failure form in deep underground engineering.To gain deep insight into the anisotropic shear fracture behaviors of a typical shale under high normal stress conditions,a series of direct shear tests were conducted on double-notched specimens in three typical bedding orientations(i.e.,the arrester,divider,short-transverse orientations)and under five normal stresses.The modeⅡfracture toughness(K_(Ⅱc))is found to exhibit a significant 3D anisotropy.The maximum K_(Ⅱc)is obtained in the divider orientation,followed by those in the arrester and short-transverse orientations.In contrast,the 3D anisotropy in the critical modeⅡenergy release rate(G_(Ⅱc))is not as significant as that in K_(Ⅱc),and G_(Ⅱc)in the arrester orientation is quite close to that in the divider orientation.The anisotropy in the prepeak input energy accumulated during shearing is found to be exactly consistent with that in G_(Ⅱc),which has not been noted before.Furthermore,the anisotropies in the modeⅡfracture resistances will,unexpectedly,not be weakened by the high normal stress.Owing to the layered structures,tensile cracks are involved during the modeⅡfracture process,resulting in the formation of rough fracture surfaces.
基金supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (No.113M407)
文摘In this study, in-plane mixed mode-Ⅰ/Ⅱ fatigue crack growth simulations and experiments are performed for the Al 7075-T651 aluminum alloy which is widely used in the aerospace industry. Tests are carried out under different mode mixity ratios to evaluate the applicability of a fracture criterion developed in a previous study to mixed mode-Ⅰ/Ⅱ fatigue crack growth tests.Results obtained from the analyses and experiments are compared with existing and developed criteria in terms of crack growth lives. Compact Tension Shear(CTS) specimens, which enable mixed mode loading with loading devices under different loading angles, are used in the simulations and experiments. In an effort to model and simulate the actual conditions in the experiments, crack surfaces of fractured specimens are scanned, crack paths are modeled exactly, and contacts are defined between the contact surfaces of a specimen and the loading device for each crack propagation step in the analyses. Having computed the mixed mode stress intensity factors from the numerical analyses, propagation life cycles are predicted by existing and the developed mixed mode-Ⅰ/Ⅱ criteria and then compared with experimental results.
基金Project(50374073) supported by the National Natural Science Foundation of ChinaProject(1343-77239) supported by the GraduaEducation Innovation Project of Central South University,China
文摘Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain-time curve comprises three stages:the linear deformation stage,the micro-cracking stage and the macroscopic crack propagation.The strain in the direction of the original notch plane is negative,due to restraining effect of compressive loading applied to the original notch plane.Both σ1 and τmax are increased as the load increases,but the slope of τmax is larger than that of σ1 and the value of τmax is always larger than that of σ1.Therefore,τmax reaches its limited value at peak load before σ1 and results in Mode Ⅱ fracture of rock.Shear-box(i.e.compression-shear) test becomes a potential standard method for achieving the true Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock.
文摘Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode I, Mode II and mixed mode I–II fracture, respectively. Microscopic characteristics of the three fracture modes of brittle rock were studied by SEM technique in order to analyze fracture behaviors and better understand fracture mechanisms of different fracture modes of brittle rock. Test results show that the microscopic characteristics of different fracture modes correspond to different fracture mechanisms. The surface of Mode I fracture has a great number of sparse and steep slip-steps with few tearing ridges and shows strong brittleness. In the surface of Mode II fracture there exist many tearing ridges and densely distributed parallel slip-steps and it is attributed to the action of shear stress. The co-action of tensile and shear stresses results in brittle cleavage planes mixed with streamline patterns and tearing ridges in the surface of mixed mode I–II fracture. The measured Mode II fracture toughness K II C and mixed mode I–II fracture toughness K mC are larger than Mode I fracture toughness K I C · K II C is about 3.5 times K I C, and KmC is about 1.2 times K I C.