期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于模态注意力图卷积特征融合的EEG和fNIRS情感识别 被引量:2
1
作者 赵卿 张雪英 +1 位作者 陈桂军 张静 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第10期1987-1997,共11页
为了提升情感识别的准确率,从情绪视频引起的脑电(EEG)和功能近红外(fNIRS)数据中提取每个通道的信号之间的联系,并提出基于模态注意力多路图卷积神经网络(MA-MP-GF)的特征融合情感识别方法.将EEG和fNIRS数据构建为图结构数据,通过多路... 为了提升情感识别的准确率,从情绪视频引起的脑电(EEG)和功能近红外(fNIRS)数据中提取每个通道的信号之间的联系,并提出基于模态注意力多路图卷积神经网络(MA-MP-GF)的特征融合情感识别方法.将EEG和fNIRS数据构建为图结构数据,通过多路图卷积分别对每种模态的信号进行特征提取;利用模态注意力图卷积层融合不同模态通道间的连接信息.模态注意力机制可以赋予不同模态节点不同权重,使得图卷积层能够更加充分提取不同模态节点间连接关系.对采集的30个被试的4类情感数据进行实验测试,与仅EEG和仅fNIRS单模态识别结果相比,所提出的图卷积融合方法能够获得更高的识别准确率,分别提升了8.06%、22.90%;与当前常用的EEG-fNIRS融合方法相比,所提出的图卷积融合方法的平均识别准确率提升了2.76%~7.36%;图卷积融合方法在加入模态注意力后识别率最高提升了1.68%. 展开更多
关键词 图卷积神经网络 脑电 功能近红外 模态注意力 多模态融合 情感识别
下载PDF
外观融合运动感知的运动目标分割算法
2
作者 徐邦武 吴秦 周浩杰 《计算机科学》 CSCD 北大核心 2024年第3期155-164,共10页
现实场景中的运动目标分割旨在分割当前场景下的运动物体,对于许多计算机视觉应用有着至关重要的作用。现有的运动目标分割算法大多通过2D光流图中的运动信息来分割运动物体,然而,这些方法还存在一些问题。当运动物体在极面内运动或者... 现实场景中的运动目标分割旨在分割当前场景下的运动物体,对于许多计算机视觉应用有着至关重要的作用。现有的运动目标分割算法大多通过2D光流图中的运动信息来分割运动物体,然而,这些方法还存在一些问题。当运动物体在极面内运动或者其3D运动方向和背景一致时,很难通过光流图分割得到;另外,错误的光流预测也会影响分割的结果。为了解决以上问题,提出了不同的运动代价,以提升运动目标分割的正确率。针对和背景共线或共面运动的物体,设计均衡重投影代价和多角度光流对比代价,通过运动物体的2D光流与背景2D光流的差异来检测运动物体。针对自我运动退化,设计差异单应性代价。最后,提出了一种基于外观融合的运动感知结构,以分割各种场景下的运动物体。采用多模态共同注意力门控,更有效地捕获运动特征和外观特征的关系,以促进外观特征和运动特征更好地交互。此外,为了突出运动的物体,提出了多层运动注意力模块,以减少冗余的外观特征对结果的影响。实验结果表明,所提方法在KITTI,JNU-UISEE,KittiMoSeg和Davis-2016数据集上均能获得较优的运动目标分割结果。 展开更多
关键词 运动目标分割 均衡重投影代价 多角度光流对比代价 多模态共同注意力门控 多层运动注意力模块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部