Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management....Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management. Tool development in this regard will help researchers quickly identify variety information. This study photographed apricot fruits outdoors and indoors and constructed a dataset that can precisely classify the fruits using a U-net model (F-score:99%), which helps to obtain the fruit's size, shape, and color features. Meanwhile, a variety search engine was constructed, which can search and identify variety from the database according to the above features. Besides, a mobile and web application (ApricotView) was developed, and the construction mode can be also applied to other varieties of fruit trees.Additionally, we have collected four difficult-to-identify seed datasets and used the VGG16 model for training, with an accuracy of 97%, which provided an important basis for ApricotView. To address the difficulties in data collection bottlenecking apricot phenomics research, we developed the first apricot database platform of its kind (ApricotDIAP, http://apricotdiap.com/) to accumulate, manage, and publicize scientific data of apricot.展开更多
Light detection and ranging(LiDAR)has contributed immensely to forest mapping and 3D tree modelling.From the perspective of data acquisition,the integration of LiDAR data from different platforms would enrich forest i...Light detection and ranging(LiDAR)has contributed immensely to forest mapping and 3D tree modelling.From the perspective of data acquisition,the integration of LiDAR data from different platforms would enrich forest information at the tree and plot levels.This research develops a general framework to integrate ground-based and UAV-LiDAR(ULS)data to better estimate tree parameters based on quantitative structure modelling(QSM).This is accomplished in three sequential steps.First,the ground-based/ULS LiDAR data were co-registered based on the local density peaks of the clustered canopy.Next,redundancy and noise were removed for the ground-based/ULS LiDAR data fusion.Finally,tree modeling and biophysical parameter retrieval were based on QSM.Experiments were performed for Backpack/Handheld/UAV-based multi-platform mobile LiDAR data of a subtropical forest,including poplar and dawn redwood species.Generally,ground-based/ULS LiDAR data fusion outperforms ground-based LiDAR with respect to tree parameter estimation compared to field data.The fusion-derived tree height,tree volume,and crown volume significantly improved by up to 9.01%,5.28%,and 18.61%,respectively,in terms of rRMSE.By contrast,the diameter at breast height(DBH)is the parameter that has the least benefits from fusion,and rRMSE remains approximately the same,because stems are already well sampled from ground data.Additionally,particularly for dense forests,the fusion-derived tree parameters were improved compared to those derived from ground-based LiDAR.Ground-based LiDAR can potentially be used to estimate tree parameters in low-stand-density forests,whereby the improvement owing to fusion is not significant.展开更多
Recent advances in wireless mobile computing, digital library, and distributed multimedia technologies are stimulating the development of mobile multimedia digital library systems ( M2DLS) that allow mobile clients ...Recent advances in wireless mobile computing, digital library, and distributed multimedia technologies are stimulating the development of mobile multimedia digital library systems ( M2DLS) that allow mobile clients to access multimedia material anywhere and anytime over a cellular radio network. This paper addresses the problem of providing synchronized multimedia retrieval in these sys- tems. An efficient inter-media synchronization scheme called wireless prioritized feedback (WPF) for mobile multimedia on-demand retrieval in digital library systems over CDMA cellular radio networks in the absence of synchronized clocks is presented. In the WPF scheme, base stations use preferential lightweight message called feedback units transmitted by mobile mediaphones to detect and correct asynchronies. The algorithm is described with pseudo code, and experiments are described to demonstrate the efficiency of WPF.展开更多
基金supported by the Fundamental Research Funds for the Central Non-profit Research Institution of the Chinese Academy of Forestry (Grant No.CAFYBB2020ZY003)the Key S&T Project of Inner Mongolia (Grant No.2021ZD0041-001-002)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.11024316000202300001)。
文摘Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management. Tool development in this regard will help researchers quickly identify variety information. This study photographed apricot fruits outdoors and indoors and constructed a dataset that can precisely classify the fruits using a U-net model (F-score:99%), which helps to obtain the fruit's size, shape, and color features. Meanwhile, a variety search engine was constructed, which can search and identify variety from the database according to the above features. Besides, a mobile and web application (ApricotView) was developed, and the construction mode can be also applied to other varieties of fruit trees.Additionally, we have collected four difficult-to-identify seed datasets and used the VGG16 model for training, with an accuracy of 97%, which provided an important basis for ApricotView. To address the difficulties in data collection bottlenecking apricot phenomics research, we developed the first apricot database platform of its kind (ApricotDIAP, http://apricotdiap.com/) to accumulate, manage, and publicize scientific data of apricot.
基金supported by the National Natural Science Foundation of China(Project No.42171361)the Research Grants Council of the Hong Kong Special Administrative Region,China,under Project PolyU 25211819the Hong Kong Polytechnic University under Projects 1-ZE8E and 1-ZVN6.
文摘Light detection and ranging(LiDAR)has contributed immensely to forest mapping and 3D tree modelling.From the perspective of data acquisition,the integration of LiDAR data from different platforms would enrich forest information at the tree and plot levels.This research develops a general framework to integrate ground-based and UAV-LiDAR(ULS)data to better estimate tree parameters based on quantitative structure modelling(QSM).This is accomplished in three sequential steps.First,the ground-based/ULS LiDAR data were co-registered based on the local density peaks of the clustered canopy.Next,redundancy and noise were removed for the ground-based/ULS LiDAR data fusion.Finally,tree modeling and biophysical parameter retrieval were based on QSM.Experiments were performed for Backpack/Handheld/UAV-based multi-platform mobile LiDAR data of a subtropical forest,including poplar and dawn redwood species.Generally,ground-based/ULS LiDAR data fusion outperforms ground-based LiDAR with respect to tree parameter estimation compared to field data.The fusion-derived tree height,tree volume,and crown volume significantly improved by up to 9.01%,5.28%,and 18.61%,respectively,in terms of rRMSE.By contrast,the diameter at breast height(DBH)is the parameter that has the least benefits from fusion,and rRMSE remains approximately the same,because stems are already well sampled from ground data.Additionally,particularly for dense forests,the fusion-derived tree parameters were improved compared to those derived from ground-based LiDAR.Ground-based LiDAR can potentially be used to estimate tree parameters in low-stand-density forests,whereby the improvement owing to fusion is not significant.
基金Project supported by National Natural Science Foundation of China (Grant No .60221120146) , National Basic Research Pro-gram of China ( Grant No . 973 -G1999032704) , and National Grand Fundamental Post Doctor Research of China (Grant No .2003034146)
文摘Recent advances in wireless mobile computing, digital library, and distributed multimedia technologies are stimulating the development of mobile multimedia digital library systems ( M2DLS) that allow mobile clients to access multimedia material anywhere and anytime over a cellular radio network. This paper addresses the problem of providing synchronized multimedia retrieval in these sys- tems. An efficient inter-media synchronization scheme called wireless prioritized feedback (WPF) for mobile multimedia on-demand retrieval in digital library systems over CDMA cellular radio networks in the absence of synchronized clocks is presented. In the WPF scheme, base stations use preferential lightweight message called feedback units transmitted by mobile mediaphones to detect and correct asynchronies. The algorithm is described with pseudo code, and experiments are described to demonstrate the efficiency of WPF.