Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i...Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.展开更多
Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large dat...Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large data collection latency for the network, which is unacceptable for data-critical applications. In this paper, we address this problem by minimizing the traveling length of MEs. Our methods mainly consist of two steps: we first construct a virtual grid network and select the minimal stop point set (SPS) from it; then, we make optimal scheduling for the MEs based on the SPS in order to minimize their traveling length. Different implementations of genetic algorithm (GA) are used to solve the problem. Our methods are evaluated by extensive simulations. The results show that these methods can greatly reduce the traveling length of MEs, and decrease the data collection latency.展开更多
基金supported by the National Natural Science Foundation of China(32172188)Science and Technology Cooperation Project of ZheJiang Province(2023SNJF058-3)。
文摘Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.
基金supported by Tianjin Municipal Information Industry Office (No. 082044012)
文摘Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large data collection latency for the network, which is unacceptable for data-critical applications. In this paper, we address this problem by minimizing the traveling length of MEs. Our methods mainly consist of two steps: we first construct a virtual grid network and select the minimal stop point set (SPS) from it; then, we make optimal scheduling for the MEs based on the SPS in order to minimize their traveling length. Different implementations of genetic algorithm (GA) are used to solve the problem. Our methods are evaluated by extensive simulations. The results show that these methods can greatly reduce the traveling length of MEs, and decrease the data collection latency.