With the proliferation of sensor-equipped portable mobile devices, Mobile CrowdSensing (MCS) using smart devices provides unprecedented opportunities for collecting enormous surrounding data. In MCS applications, a ...With the proliferation of sensor-equipped portable mobile devices, Mobile CrowdSensing (MCS) using smart devices provides unprecedented opportunities for collecting enormous surrounding data. In MCS applications, a crucial issue is how to recruit appropriate participants from a pool of available users to accomplish released tasks, satisfying both resource efficiency and sensing quality. In order to meet these two optimization goals simultaneously, in this paper, we present a novel MCS task allocation framework by aligning existing task sequence with users' moving regularity as much as possible. Based on the process of mobility repetitive pattern discovery, the original task allocation problem is converted into a pattern matching issue, and the involved optimization goals are transformed into pattern matching length and support degree indicators. To determine a trade-off between these two competitive metrics, we propose greedy- based optimal assignment scheme search approaches, namely MLP, MDP, IU1 and IU2 algorithm, with respect to matching length-preferred, support degree-preferred and integrated utility, respectively. Comprehensive experiments on real- world open data set and synthetic data set clearly validate the effectiveness of our proposed framework on MCS task optimal allocation.展开更多
随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preser...随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preservation data aggregation algorithm based on elliptic curve cryptography).服务器将参与者随机划分成g个簇,并形成簇公钥.簇内节点通过簇公钥加密数据并融合得到簇融合结果数据.服务器通过与簇内成员协同合作得到融合结果原文,由于服务器接收到的是融合密文且密文解密需要簇内所有节点共同协作,因此服务器不能得到单个参与者的数据.此外,通过服务器对簇公钥的更新,能够方便参与者动态加入或失效.实验结果显示ECPPDA具有高安全性、低消耗、低通信、高精度的特点.展开更多
针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全...针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全哈希函数生成256位哈希值作为参与者的匿名身份标识,以此来保护参与者的身份隐私;其次,依据参与者的数据效用值、期望回报及感知任务预算实现面向数据质量的补偿激励,选择性价比最高的胜出者;接着,借助分布式压缩感知理论,对胜出者的原始感知数据压缩处理,得到剔除冗余的观测值,并在观测值中添加哈希函数值等噪扰数据后传送于服务器端聚合,以增强感知数据的隐私性保护,之后对隐私数据集进行完整性校验并重构;最后,利用真实数据集,通过仿真实验对IMPP的有效性进行对比分析.实验结果表明,IMPP机制在隐私保护水平、数据完整性、数据精确性、时间效率、评估准确率、重构匹配度及激励效果等方面是高效的.展开更多
基金Acknowledgements This work was partially supported by the National Basic Research Program of China (2015CB352400), the National Natural Science Foundation of China (Grant Nos. 61402360, 61402369), the Foundation of Shaanxi Educational Committee (16JK1509). The authors are grateful to the anonymous referees for their helpful comments and suggestions.
文摘With the proliferation of sensor-equipped portable mobile devices, Mobile CrowdSensing (MCS) using smart devices provides unprecedented opportunities for collecting enormous surrounding data. In MCS applications, a crucial issue is how to recruit appropriate participants from a pool of available users to accomplish released tasks, satisfying both resource efficiency and sensing quality. In order to meet these two optimization goals simultaneously, in this paper, we present a novel MCS task allocation framework by aligning existing task sequence with users' moving regularity as much as possible. Based on the process of mobility repetitive pattern discovery, the original task allocation problem is converted into a pattern matching issue, and the involved optimization goals are transformed into pattern matching length and support degree indicators. To determine a trade-off between these two competitive metrics, we propose greedy- based optimal assignment scheme search approaches, namely MLP, MDP, IU1 and IU2 algorithm, with respect to matching length-preferred, support degree-preferred and integrated utility, respectively. Comprehensive experiments on real- world open data set and synthetic data set clearly validate the effectiveness of our proposed framework on MCS task optimal allocation.
文摘随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preservation data aggregation algorithm based on elliptic curve cryptography).服务器将参与者随机划分成g个簇,并形成簇公钥.簇内节点通过簇公钥加密数据并融合得到簇融合结果数据.服务器通过与簇内成员协同合作得到融合结果原文,由于服务器接收到的是融合密文且密文解密需要簇内所有节点共同协作,因此服务器不能得到单个参与者的数据.此外,通过服务器对簇公钥的更新,能够方便参与者动态加入或失效.实验结果显示ECPPDA具有高安全性、低消耗、低通信、高精度的特点.
文摘针对已有大多数研究在设计激励机制时未考虑用户的隐私泄露问题,本文提出一种支持隐私保护的激励机制综合方案IMPP(Incentive Mechanism with Privacy-Preserving in mobile crowd sensing).首先,基于轻量级隐私保护思想,采用单向安全哈希函数生成256位哈希值作为参与者的匿名身份标识,以此来保护参与者的身份隐私;其次,依据参与者的数据效用值、期望回报及感知任务预算实现面向数据质量的补偿激励,选择性价比最高的胜出者;接着,借助分布式压缩感知理论,对胜出者的原始感知数据压缩处理,得到剔除冗余的观测值,并在观测值中添加哈希函数值等噪扰数据后传送于服务器端聚合,以增强感知数据的隐私性保护,之后对隐私数据集进行完整性校验并重构;最后,利用真实数据集,通过仿真实验对IMPP的有效性进行对比分析.实验结果表明,IMPP机制在隐私保护水平、数据完整性、数据精确性、时间效率、评估准确率、重构匹配度及激励效果等方面是高效的.