Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been ...Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.展开更多
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.展开更多
In order to meet the exponentially increasing demand on mobile data traffic, self-backhaul ultra-dense networks(UDNs) combined with millimeter wave(mm Wave) communications are expected to provide high spatial multiple...In order to meet the exponentially increasing demand on mobile data traffic, self-backhaul ultra-dense networks(UDNs) combined with millimeter wave(mm Wave) communications are expected to provide high spatial multiplexing gain and wide bandwidths for multi-gigabit peak data rates. In selfbackhaul UDNs, how to make the radio access rates of small cells match their backhaul rates by user association and how to dynamically allocate bandwidth for the access links and backhaul links to balance two-hop link resources are two key problems on improving the overall throughputs. Based on this, a joint scheme of user association and resource allocation is proposed in self-backhaul ultra-dense networks. Because of the combinatorial and nonconvex features of the original optimization problem, it has been divided into two subproblems. Firstly, to make the radio access rates of small base stations match their backhaul rates and maximize sum access rates per Hz of all small cells, a proportional constraint is introduced, and immune optimization algorithm(IOA) is adopted to optimize the association indicator variables and the boresight angles of between users and base stations. Then, the optimal backhaul and access bandwidths are calculated by differentiating the general expression of overall throughput. Simulation results indicatethat the proposed scheme increases the overall throughputs significantly compared to the traditional minimum-distance based association scheme.展开更多
A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least...A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.展开更多
In this paper,the feasibility and performance of millimeter wave(mm Wave)60 GHz ultra-wide band(UWB)systems for gigabit machine-to-machine(M2M)communications are analyzed.Specifically,based on specifications,channel m...In this paper,the feasibility and performance of millimeter wave(mm Wave)60 GHz ultra-wide band(UWB)systems for gigabit machine-to-machine(M2M)communications are analyzed.Specifically,based on specifications,channel measurements and models for both line-of-sight(LOS)and non-LOS(NLOS)scenarios,60 GHz propagation mechanisms are summarized,and 60 GHz UWB link budget and performance are analyzed.Tests are performed for determining ranges and antenna configurations.Results show that gigabit capacity can be achieved with omni-directional antennas configuration at the transceiver,especially in LOS conditions.When the LOS path is blocked by a moving person or by radiowave propagation in the NLOS situation,omni-directional and directional antennas configuration at the transceiver is required,especially for a larger range between machines in office rooms.Therefore,it is essential to keep a clear LOS path in M2M applications like gigabit data transfer.The goal of this work is to provide useful information for standardizations and design of 60 GHz UWB systems.展开更多
With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and ...With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and sub-terahertz(subTHz)frequency bands.Channel modeling is essential for system design and performance evaluation of new wireless communication systems.Accurate channel modeling relies on reliable measured channel data,which is collected by high-fidelity channel sounders.Furthermore,it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario(including both indoor short-range and outdoor long-range scenarios).To achieve this purpose,this paper presents a stateof-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions,which can support a measurement range up to 300 m and 600 m in principle,respectively.The design,development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported,with a focus on their system principle,link budget,and backto-back measurements.Furthermore,a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems.Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular.A higher number of Multi Path Components(MPC)are observed for the 28 GHz system,while the same main MPC are observed for both systems.展开更多
Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher da...Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.展开更多
Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
随着信息通信技术的快速发展和广泛部署,人类的生产生活以及社会治理向数字化、信息化、智能化方向不断深入演进。作为应用最广泛的无线通信技术之一,无线局域网(WLAN,wireless local area network)需要在吞吐量、可靠性、时延等关键性...随着信息通信技术的快速发展和广泛部署,人类的生产生活以及社会治理向数字化、信息化、智能化方向不断深入演进。作为应用最广泛的无线通信技术之一,无线局域网(WLAN,wireless local area network)需要在吞吐量、可靠性、时延等关键性能上进一步突破,同时还需要具备感知、智能等新特性。毫米波(mmWave,millimeter wave)巨大的频率资源为无线局域网发展注入了新动能,但同时也带来了新的技术挑战和需求。首先,回顾了无线局域网的发展历程;其次,描述了未来无线局域网的网络结构、典型应用、发展方向和性能指标要求;然后,分析了毫米波频段无线信道特性及其对无线网络设计的新要求、新挑战;最后,对能够适应这些挑战和要求的一些潜在关键技术进行了探讨和展望。展开更多
基金supported by Aeronautical Science Foundation of China(2017ZC52021)the Fundamental Research Funds for the Central Universities(NS2017066)+1 种基金the Foundation of Graduate Innovation Center in NUAA(kfjj20171501)China Postdoctoral Science Foundation Funded Project(2015M581791)
文摘Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.
文摘In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
基金supported by NSFC under Grant 61471303EU FP7 QUICK project under Grant PIRSES-GA-2013-612652
文摘In order to meet the exponentially increasing demand on mobile data traffic, self-backhaul ultra-dense networks(UDNs) combined with millimeter wave(mm Wave) communications are expected to provide high spatial multiplexing gain and wide bandwidths for multi-gigabit peak data rates. In selfbackhaul UDNs, how to make the radio access rates of small cells match their backhaul rates by user association and how to dynamically allocate bandwidth for the access links and backhaul links to balance two-hop link resources are two key problems on improving the overall throughputs. Based on this, a joint scheme of user association and resource allocation is proposed in self-backhaul ultra-dense networks. Because of the combinatorial and nonconvex features of the original optimization problem, it has been divided into two subproblems. Firstly, to make the radio access rates of small base stations match their backhaul rates and maximize sum access rates per Hz of all small cells, a proportional constraint is introduced, and immune optimization algorithm(IOA) is adopted to optimize the association indicator variables and the boresight angles of between users and base stations. Then, the optimal backhaul and access bandwidths are calculated by differentiating the general expression of overall throughput. Simulation results indicatethat the proposed scheme increases the overall throughputs significantly compared to the traditional minimum-distance based association scheme.
文摘A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.
基金supported by the State Key Laboratory of Millimeter Waves,Southeast University,China under grant No.K201517supported by the Fundamental Research Funds for the Central Universities under Grant No.2015 XS19.
文摘In this paper,the feasibility and performance of millimeter wave(mm Wave)60 GHz ultra-wide band(UWB)systems for gigabit machine-to-machine(M2M)communications are analyzed.Specifically,based on specifications,channel measurements and models for both line-of-sight(LOS)and non-LOS(NLOS)scenarios,60 GHz propagation mechanisms are summarized,and 60 GHz UWB link budget and performance are analyzed.Tests are performed for determining ranges and antenna configurations.Results show that gigabit capacity can be achieved with omni-directional antennas configuration at the transceiver,especially in LOS conditions.When the LOS path is blocked by a moving person or by radiowave propagation in the NLOS situation,omni-directional and directional antennas configuration at the transceiver is required,especially for a larger range between machines in office rooms.Therefore,it is essential to keep a clear LOS path in M2M applications like gigabit data transfer.The goal of this work is to provide useful information for standardizations and design of 60 GHz UWB systems.
基金supported by EURAMET European Partnership on Metrology Programme (MEWS) and under the framework of European COST INTERACT action(CA20120)
文摘With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and sub-terahertz(subTHz)frequency bands.Channel modeling is essential for system design and performance evaluation of new wireless communication systems.Accurate channel modeling relies on reliable measured channel data,which is collected by high-fidelity channel sounders.Furthermore,it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario(including both indoor short-range and outdoor long-range scenarios).To achieve this purpose,this paper presents a stateof-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions,which can support a measurement range up to 300 m and 600 m in principle,respectively.The design,development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported,with a focus on their system principle,link budget,and backto-back measurements.Furthermore,a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems.Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular.A higher number of Multi Path Components(MPC)are observed for the 28 GHz system,while the same main MPC are observed for both systems.
文摘Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
文摘随着信息通信技术的快速发展和广泛部署,人类的生产生活以及社会治理向数字化、信息化、智能化方向不断深入演进。作为应用最广泛的无线通信技术之一,无线局域网(WLAN,wireless local area network)需要在吞吐量、可靠性、时延等关键性能上进一步突破,同时还需要具备感知、智能等新特性。毫米波(mmWave,millimeter wave)巨大的频率资源为无线局域网发展注入了新动能,但同时也带来了新的技术挑战和需求。首先,回顾了无线局域网的发展历程;其次,描述了未来无线局域网的网络结构、典型应用、发展方向和性能指标要求;然后,分析了毫米波频段无线信道特性及其对无线网络设计的新要求、新挑战;最后,对能够适应这些挑战和要求的一些潜在关键技术进行了探讨和展望。