Due to limited antenna space,high communication requirements,and strict regulatory constraints,the design of antennas for modern mobile phones has become an exceedingly challenging task.In recent years,numerous studie...Due to limited antenna space,high communication requirements,and strict regulatory constraints,the design of antennas for modern mobile phones has become an exceedingly challenging task.In recent years,numerous studies have been conducted in this area,leading to significant advancements.This review paper comprehensively summarizes recent progress made in antenna design for modern mobile phones.Firstly,the challenges faced in antenna design for modern mobile phones are described,including bandwidth enhancement,integration and decoupling techniques,mm-wave array antennas,satellite communication antennas,as well as interactions between mobile antennas and the human body.Secondly,the basic antenna types(such as inverted-F,slot,loop,and planar inverted-F antennas)commonly used in modern metal-bezel mobile phones along with their key characteristics are briefly summarized.Thirdly,the commonly exployed methods used in practical applications for designing wideband antennas within compact sizes and achieving decoupling among multiple antennas with wide bandwidths are collected.Fourthly,recent advances in the design of compact,wideband,and wide-angle scanning mm-wave arrays for modern mobile phones are summarized.Fifthly,recent progress made in satellite communication antenna designs for modern mobile phones,including broadside and end-fire radiation patterns,is presented.Sixthly,recent studies on the interaction between mobile antennas and the human body are briefly concluded.Finally,the future challenge of antenna design for mobile phones is briefly discussed.It is our hope that this comprehensive review will provide readers with a systematic understanding of antenna design principles applicable to modern mobile phones.展开更多
A general empirical path loss(PL) model for air-to-ground(A2 G) millimeter-wave(mm Wave) channels is proposed in this paper. Different from existing PL models, the new model takes the height factor of unmanned aerial ...A general empirical path loss(PL) model for air-to-ground(A2 G) millimeter-wave(mm Wave) channels is proposed in this paper. Different from existing PL models, the new model takes the height factor of unmanned aerial vehicles(UAVs) into account, and divides the propagation conditions into three cases(i.e., line-of-sight, reflection,and diffraction). A map-based deterministic PL prediction algorithm based on the ray-tracing(RT) technique is developed, and is used to generate numerous PL data for different cases. By fitting and analyzing the PL data under different scenarios and UAV heights, altitude-dependent model parameters are provided. Simulation results show that the proposed model can be effectively used to predict PL values for both low-and high-altitude cases.The prediction results of the proposed model better match the RT-based calculation results than those of the Third Generation Partnership Project(3 GPP) model and the close-in model. The standard deviation of the PL is also much smaller. Moreover, the new model is flexible and can be extended to other A2 G scenarios(not included in this paper) by adjusting the parameters according to the simulation or measurement data.展开更多
The challenges in the design of CMOS millimeter-wave (mm-wave) transceiver for Gbps wireless com- munication are discussed. To support the Gbps data rate, the link bandwidth of the receiver/transmitter must be wide ...The challenges in the design of CMOS millimeter-wave (mm-wave) transceiver for Gbps wireless com- munication are discussed. To support the Gbps data rate, the link bandwidth of the receiver/transmitter must be wide enough, which puts a lot of pressure on the mm-wave front-end as well as on the baseband circuit. This paper discusses the effects of the limited link bandwidth on the transceiver system performance and overviews the band- width expansion techniques for mm-wave amplifiers and IF programmable gain amplifier. Furthermore, dual-mode power amplifier (PA) and self-healing technique are introduced to improve the PA's average efficiency and to deal with the process, voltage, and temperature variation issue, respectively. Several fully-integrated CMOS mm-wave transceivers are also presented to give a short overview on the state-of-the-art mm-wave transceivers.展开更多
提出并模拟证明了基于电光相位调制(PM)和布拉格光纤光栅(FBG)实现受抑光载波的双边带(DSBOCS,Double-Sideband with Optical Carrier Suppression)的双向Radio over Fiber(RoF)传输系统网络设计方案.激光光源置于中心站,载有信息的光...提出并模拟证明了基于电光相位调制(PM)和布拉格光纤光栅(FBG)实现受抑光载波的双边带(DSBOCS,Double-Sideband with Optical Carrier Suppression)的双向Radio over Fiber(RoF)传输系统网络设计方案.激光光源置于中心站,载有信息的光信号通过光纤到达基站后经FBG分成两路,其中一路是被接收的下行信号,另一路作为上行信号调制后返回中心站.通过FBG,其下行信号不但实现了受抑光载波的双边带———使通信带宽加倍,上行信号作为光源通过电光强度调制,有效地实现信息的上载.仿真结果表明,光源发射功率为3 dBm,无光放大,在色散系数为20 ps/(nm.km),衰减系数为0.25 dB/km的单模光纤中传输,超高频RF信号的频率可达24 GHz,系统码元传输速率可达2.5 Gbit/s、传输距离50 km以上.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62101133,62271279,62271282)the Natural Science Foundation of Shanghai(Grant No.21ZR1406800)the Shanghai Rising Star Program(Grant No.22QC1400100).
文摘Due to limited antenna space,high communication requirements,and strict regulatory constraints,the design of antennas for modern mobile phones has become an exceedingly challenging task.In recent years,numerous studies have been conducted in this area,leading to significant advancements.This review paper comprehensively summarizes recent progress made in antenna design for modern mobile phones.Firstly,the challenges faced in antenna design for modern mobile phones are described,including bandwidth enhancement,integration and decoupling techniques,mm-wave array antennas,satellite communication antennas,as well as interactions between mobile antennas and the human body.Secondly,the basic antenna types(such as inverted-F,slot,loop,and planar inverted-F antennas)commonly used in modern metal-bezel mobile phones along with their key characteristics are briefly summarized.Thirdly,the commonly exployed methods used in practical applications for designing wideband antennas within compact sizes and achieving decoupling among multiple antennas with wide bandwidths are collected.Fourthly,recent advances in the design of compact,wideband,and wide-angle scanning mm-wave arrays for modern mobile phones are summarized.Fifthly,recent progress made in satellite communication antenna designs for modern mobile phones,including broadside and end-fire radiation patterns,is presented.Sixthly,recent studies on the interaction between mobile antennas and the human body are briefly concluded.Finally,the future challenge of antenna design for mobile phones is briefly discussed.It is our hope that this comprehensive review will provide readers with a systematic understanding of antenna design principles applicable to modern mobile phones.
基金Project supported by the National Key Scientific Instrument and Equipment Development Project,China (No. 61827801)the Aeronautical Science Foundation of China (No. 201901052001)+2 种基金the Fundamental Research Funds for the Central Universities,China (Nos. NS2020026 and NS2020063)the State Key Laboratory of Integrated Services Network Funding,China (No. ISN22-11)the Open Foundation for Graduate Innovation of Nanjing University of Aeronautics and Astronautics (NUAA),China(No. KFJJ20200416)。
文摘A general empirical path loss(PL) model for air-to-ground(A2 G) millimeter-wave(mm Wave) channels is proposed in this paper. Different from existing PL models, the new model takes the height factor of unmanned aerial vehicles(UAVs) into account, and divides the propagation conditions into three cases(i.e., line-of-sight, reflection,and diffraction). A map-based deterministic PL prediction algorithm based on the ray-tracing(RT) technique is developed, and is used to generate numerous PL data for different cases. By fitting and analyzing the PL data under different scenarios and UAV heights, altitude-dependent model parameters are provided. Simulation results show that the proposed model can be effectively used to predict PL values for both low-and high-altitude cases.The prediction results of the proposed model better match the RT-based calculation results than those of the Third Generation Partnership Project(3 GPP) model and the close-in model. The standard deviation of the PL is also much smaller. Moreover, the new model is flexible and can be extended to other A2 G scenarios(not included in this paper) by adjusting the parameters according to the simulation or measurement data.
基金Project supported in part by the National Natural Science Foundation of China(No.61331003)
文摘The challenges in the design of CMOS millimeter-wave (mm-wave) transceiver for Gbps wireless com- munication are discussed. To support the Gbps data rate, the link bandwidth of the receiver/transmitter must be wide enough, which puts a lot of pressure on the mm-wave front-end as well as on the baseband circuit. This paper discusses the effects of the limited link bandwidth on the transceiver system performance and overviews the band- width expansion techniques for mm-wave amplifiers and IF programmable gain amplifier. Furthermore, dual-mode power amplifier (PA) and self-healing technique are introduced to improve the PA's average efficiency and to deal with the process, voltage, and temperature variation issue, respectively. Several fully-integrated CMOS mm-wave transceivers are also presented to give a short overview on the state-of-the-art mm-wave transceivers.