In this paper, we propose to generalize the coding schemes first proposed by Kozic &al to high spectral efficient modulation schemes. We study at first Chaos Coded Modulation based on the use of small ...In this paper, we propose to generalize the coding schemes first proposed by Kozic &al to high spectral efficient modulation schemes. We study at first Chaos Coded Modulation based on the use of small dimensional modulo-MAP encoding process and we give a solution to study the distance spectrum of such coding schemes to accurately predict their performances. However, the obtained performances are quite poor. To improve them, we use then a high dimensional modulo-MAP mapping process similar to the low-density generator-matrix codes (LDGM) introduced by Kozic &al. The main difference with their work is that we use an encoding and decoding process on GF (2m) which enables to obtain better performances while preserving a quite simple decoding algorithm when we use the Extended Min-Sum (EMS) algorithm of Declercq &Fossorier.展开更多
文摘In this paper, we propose to generalize the coding schemes first proposed by Kozic &al to high spectral efficient modulation schemes. We study at first Chaos Coded Modulation based on the use of small dimensional modulo-MAP encoding process and we give a solution to study the distance spectrum of such coding schemes to accurately predict their performances. However, the obtained performances are quite poor. To improve them, we use then a high dimensional modulo-MAP mapping process similar to the low-density generator-matrix codes (LDGM) introduced by Kozic &al. The main difference with their work is that we use an encoding and decoding process on GF (2m) which enables to obtain better performances while preserving a quite simple decoding algorithm when we use the Extended Min-Sum (EMS) algorithm of Declercq &Fossorier.