Mixed-mode I-II crack-based fatigue crack propagation(FCPⅠ-Ⅱ)usually occurs in engineering structures;however,no theoretical formula or effective compliance test methods have been established for FCPI-IIto date.For ...Mixed-mode I-II crack-based fatigue crack propagation(FCPⅠ-Ⅱ)usually occurs in engineering structures;however,no theoretical formula or effective compliance test methods have been established for FCPI-IIto date.For mixed-mode I-II flawed components,based on the principle of mean-value energy equivalence,we propose a theoretical method to describe the relationship between material elastic parameters,geometrical dimensions,load(or displacement),and energy.Based on the maximum circumferential stress criterion,we propose a uniform compliance model for compact tensile shear(CTS)specimens with horizontal cracks deflecting and propagating(flat-folding propagation)under different loading angles,geometries,and materials.Along with an innovative design of the fixture of CTS specimens used for FCPI-IItests,we develop a new compliancebased testing method for FCPⅠ-Ⅱ.For the 30Cr2Ni4MoV rotor steel,the FCP rates of modeⅠ,modeⅡ,and mixed-modeⅠ-Ⅱcracks were obtained via FCP tests using compact tension,Arcan,and CTS specimens,respectively.The obtained da/d N versusΔJ curves of the FCP rates are close.The loading angleαand dimensionless initial crack length a0/W demonstrated negligible effects on the FCP rates.Hence,the FCP rates of mode I crack can be used to predict the residual life of structural crack propagation.展开更多
A closed-form solution for predicting the tangential stress of an inclusion located in mixed mode Ⅰ and Ⅱ crack tip field was developed based on the Eshelby equivalent inclusion theory. Then a mixed mode fracture cr...A closed-form solution for predicting the tangential stress of an inclusion located in mixed mode Ⅰ and Ⅱ crack tip field was developed based on the Eshelby equivalent inclusion theory. Then a mixed mode fracture criterion, including the fracture direction and the critical load, was established based on the maximum tangential stress in the inclusion for brittle inclusioninduced fracture materials. The proposed fracture criterion is a function of the inclusion fracture stress, its size and volume fraction, as well as the elastic constants of the inclusion and the matrix material. The present criterion will reduce to the conventional one as the inclusion having the same elastic behavior as the matrix material. The proposed solutions are in good agreement with detailed finite element analysis and measurement.展开更多
It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times ...It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.展开更多
基金the National Key Research and Development Program of China(Grant No.2017YFB0702200)the National Natural Science Foundation of China(Grant No.11872320)the Policy Guidance Program of Jiangsu Province(Grant No.BZ2020057)。
文摘Mixed-mode I-II crack-based fatigue crack propagation(FCPⅠ-Ⅱ)usually occurs in engineering structures;however,no theoretical formula or effective compliance test methods have been established for FCPI-IIto date.For mixed-mode I-II flawed components,based on the principle of mean-value energy equivalence,we propose a theoretical method to describe the relationship between material elastic parameters,geometrical dimensions,load(or displacement),and energy.Based on the maximum circumferential stress criterion,we propose a uniform compliance model for compact tensile shear(CTS)specimens with horizontal cracks deflecting and propagating(flat-folding propagation)under different loading angles,geometries,and materials.Along with an innovative design of the fixture of CTS specimens used for FCPI-IItests,we develop a new compliancebased testing method for FCPⅠ-Ⅱ.For the 30Cr2Ni4MoV rotor steel,the FCP rates of modeⅠ,modeⅡ,and mixed-modeⅠ-Ⅱcracks were obtained via FCP tests using compact tension,Arcan,and CTS specimens,respectively.The obtained da/d N versusΔJ curves of the FCP rates are close.The loading angleαand dimensionless initial crack length a0/W demonstrated negligible effects on the FCP rates.Hence,the FCP rates of mode I crack can be used to predict the residual life of structural crack propagation.
基金Project supported by the National Basic Research Program of China (No. 2004CB619303).
文摘A closed-form solution for predicting the tangential stress of an inclusion located in mixed mode Ⅰ and Ⅱ crack tip field was developed based on the Eshelby equivalent inclusion theory. Then a mixed mode fracture criterion, including the fracture direction and the critical load, was established based on the maximum tangential stress in the inclusion for brittle inclusioninduced fracture materials. The proposed fracture criterion is a function of the inclusion fracture stress, its size and volume fraction, as well as the elastic constants of the inclusion and the matrix material. The present criterion will reduce to the conventional one as the inclusion having the same elastic behavior as the matrix material. The proposed solutions are in good agreement with detailed finite element analysis and measurement.
文摘It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.