传统的社交网络推荐一般依靠用户之间的好友关系,但好友关系不是基于共同兴趣而产生的。针对这种情况,提出通过用户标签所表达的情感兴趣来扩展用户好友关系,形成基于用户好友关系和共同兴趣的混合推荐。利用用户间直接的朋友关系构建...传统的社交网络推荐一般依靠用户之间的好友关系,但好友关系不是基于共同兴趣而产生的。针对这种情况,提出通过用户标签所表达的情感兴趣来扩展用户好友关系,形成基于用户好友关系和共同兴趣的混合推荐。利用用户间直接的朋友关系构建显式社交网络,利用标签数据构建隐式社交网络;在显式和隐式社交网络图中分别采用提出的SNA_SPFA(Social Networks Algorithm Based on Shortest Path Faster Algorithm)算法得到推荐结果;最后按照一定权重混合两种推荐结果。实验表明,该方法优于传统的协同过滤方法和社交网络推荐。展开更多
文摘传统的社交网络推荐一般依靠用户之间的好友关系,但好友关系不是基于共同兴趣而产生的。针对这种情况,提出通过用户标签所表达的情感兴趣来扩展用户好友关系,形成基于用户好友关系和共同兴趣的混合推荐。利用用户间直接的朋友关系构建显式社交网络,利用标签数据构建隐式社交网络;在显式和隐式社交网络图中分别采用提出的SNA_SPFA(Social Networks Algorithm Based on Shortest Path Faster Algorithm)算法得到推荐结果;最后按照一定权重混合两种推荐结果。实验表明,该方法优于传统的协同过滤方法和社交网络推荐。