期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合多尺度特征的脑肿瘤分割算法
1
作者 苏赋 马傲 李沁 《光电子.激光》 CAS CSCD 北大核心 2024年第12期1337-1344,共8页
脑肿瘤核磁共振成像(magnetic resonance imaging,MRI)分割是脑肿瘤诊断和治疗的重要环节,针对U-Net网络结构对图像特征感受野大小有所限制、上下文信息存在鸿沟导致的分割准确率较低的问题,本文提出了一种融合多尺度特征的脑肿瘤MRI分... 脑肿瘤核磁共振成像(magnetic resonance imaging,MRI)分割是脑肿瘤诊断和治疗的重要环节,针对U-Net网络结构对图像特征感受野大小有所限制、上下文信息存在鸿沟导致的分割准确率较低的问题,本文提出了一种融合多尺度特征的脑肿瘤MRI分割算法。首先,设计了一种多尺度聚合模块(multi-scale aggregation module,MAM)来替换原始U-Net网络中的常规卷积层,增加网络的深度以及宽度,来捕获特征图的边界细节信息。其次,在跳跃连接中用上下文空洞空间金字塔模块(context atrous spatial pyramid,CASP)代替直接拼接操作,扩大网络的感受野,增强对不同尺度大小的病灶的提取能力。最后,在U型的底部设计了一种多层次聚合注意力模块(multi-level aggregation attention,MAA),使网络模型关注图像分割区域有效特征,排除背景噪声。将改进算法在癌症基因组图谱(脑肿瘤数据)数据库(the Cancer Genome Atlas,TCGA)上进行实验验证,其结果表明所提算法的平均交并比(mean intersection over union,mIoU)、Dice系数、敏感性、特异性、准确率等指标分别为:91.39%、92.81%、89.14%、99.95%、95.78%。 展开更多
关键词 核磁共振成像(MRI) 脑肿瘤分割 特征聚合 空洞空间金字塔 混合注意力机制
原文传递
基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测 被引量:6
2
作者 李飞 胡坤 +2 位作者 张勇 王文善 蒋浩 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第11期2156-2167,共12页
针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络Mobile-Netv3代替CSPDarknet53作为骨干网络,结合高... 针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络Mobile-Netv3代替CSPDarknet53作为骨干网络,结合高效通道域ECA模块和空间域注意力机制(STNet)构建混合域注意力网络(ECSNet),改进了MobileNetv3嵌入ECSNet,并且提升了模型对空间和通道的关注度.引入深度可分离卷积块代替网络中3*3卷积,并将YOLOv4的检测头(Prediction Heads)缩减为2种尺度,轻量化模型降低网络复杂度和训练难度,完成ECSMv3_YOLOv4模型的搭建,使用K-means聚类6个Anchors预测目标框高宽,提高网络对表面撕裂的检测性能.研制带式输送机多维度智能巡检样机,采集制作输送带多维度面的纵向撕裂数据集,开展网络模型的训练、测试、识别和定位实验.结果表明,提出算法在测试集中的平均识别准确率为97.8%,识别速度为37帧/s,模型的计算量和参数量为4.882 G和8.851 M,通过试验不同的网络模型效果和改变光照强度,该方法体现出检测精度高、速度快和轻量化等优点,具备更强的适应性和抗干扰能力. 展开更多
关键词 纵向撕裂 多维度检测 MobileNetv3 混合域注意力机制 YOLOv4 轻量化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部